首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract

If one assumes that the surplus of an insurer follows a jump-diffusion process and the insurer would invest its surplus in a risky asset, whose prices are modeled by a geometric Brownian motion, the resulting surplus for the insurer is called a jump-diffusion surplus process compounded by a geometric Brownian motion. In this resulting surplus process, ruin may be caused by a claim or oscillation. We decompose the ruin probability in the resulting surplus process into the sum of two ruin probabilities: the probability that ruin is caused by a claim, and the probability that ruin is caused by oscillation. Integro-differential equations for these ruin probabilities are derived. When claim sizes are exponentially distributed, asymptotical formulas of the ruin probabilities are derived from the integro-differential equations, and it is shown that all three ruin probabilities are asymptotical power functions with the same orders and that the orders of the power functions are determined by the drift and volatility parameters of the geometric Brownian motion. It is known that the ruin probability for a jump-diffusion surplus process is an asymptotical exponential function when claim sizes are exponentially distributed. The results of this paper further confirm that risky investments for an insurer are dangerous in the sense that either ruin is certain or the ruin probabilities are asymptotical power functions, not asymptotical exponential functions, when claim sizes are exponentially distributed.  相似文献   

2.
3.
We study an optimal investment control problem for an insurance company. The surplus process follows the Cramer-Lundberg process with perturbation of a Brownian motion. The company can invest its surplus into a risk-free asset and a Black-Scholes risky asset. The optimization objective is to minimize the probability of ruin. We show by new operators that the minimal ruin probability function is a classical solution to the corresponding HJB equation. Asymptotic behaviors of the optimal investment control policy and the minimal ruin probability function are studied for low surplus levels with a general claim size distribution. Some new asymptotic results for large surplus levels in the case with exponential claim distributions are obtained. We consider two cases of investment control: unconstrained investment and investment with a limited amount.  相似文献   

4.
We consider a risk process with the possibility of investment into a risky asset. The aim of the paper is to obtain the asymptotic behaviour of the ruin probability under the optimal investment strategy in the small claims case. In addition we prove convergence of the optimal investment level as the initial capital tends to infinity.  相似文献   

5.
We consider an insurance company whose surplus is represented by the classical Cramer-Lundberg process. The company can invest its surplus in a risk-free asset and in a risky asset, governed by the Black-Scholes equation. There is a constraint that the insurance company can only invest in the risky asset at a limited leveraging level; more precisely, when purchasing, the ratio of the investment amount in the risky asset to the surplus level is no more than a; and when short-selling, the proportion of the proceeds from the short-selling to the surplus level is no more than b. The objective is to find an optimal investment policy that minimizes the probability of ruin. The minimal ruin probability as a function of the initial surplus is characterized by a classical solution to the corresponding Hamilton-Jacobi-Bellman (HJB) equation. We study the optimal control policy and its properties. The interrelation between the parameters of the model plays a crucial role in the qualitative behavior of the optimal policy. For example, for some ratios between a and b, quite unusual and at first ostensibly counterintuitive policies may appear, like short-selling a stock with a higher rate of return to earn lower interest, or borrowing at a higher rate to invest in a stock with lower rate of return. This is in sharp contrast with the unrestricted case, first studied in Hipp and Plum, or with the case of no short-selling and no borrowing studied in Azcue and Muler.  相似文献   

6.
Abstract

The traditional theory of collective risk is concerned with fluctuations in the capital reserve {Y(t): t ?O} of an insurance company. The classical model represents {Y(t)} as a positive constant x (initial capital) plus a deterministic linear function (cumulative income) minus a compound Poisson process (cumulative claims). The central problem is to determine the ruin probability ψ(x) that capital ever falls to zero. It is known that, under reasonable assumptions, one can approximate {Y(t)} by an appropriate Wiener process and hence ψ(.) by the corresponding exponential function of (Brownian) first passage probabilities. This paper considers the classical model modified by the assumption that interest is earned continuously on current capital at rate β > O. It is argued that Y(t) can in this case be approximated by a diffusion process Y*(t) which is closely related to the classical Ornstein-Uhlenbeck process. The diffusion {Y*(t)}, which we call compounding Brownian motion, reduces to the ordinary Wiener process when β = O. The first passage probabilities for Y*(t) are found to form a truncated normal distribution, which approximates the ruin function ψ(.) for the model with compounding assets. The approximate expression for ψ(.) is compared against the exact expression for a special case in which the latter is known. Assuming parameter values for which one would anticipate a good approximation, the two expressions are found to agree extremely well over a wide range of initial asset levels.  相似文献   

7.
Abstract

We extend the work of Browne (1995) and Schmidli (2001), in which they minimize the probability of ruin of an insurer facing a claim process modeled by a Brownian motion with drift. We consider two controls to minimize the probability of ruin: (1) investing in a risky asset and (2) purchasing quota-share reinsurance. We obtain an analytic expression for the minimum probability of ruin and the corresponding optimal controls, and we demonstrate our results with numerical examples.  相似文献   

8.
This paper proposes a two-state Markov-switching model for stock market returns in which the state-dependent expected returns, their variance and associated regime-switching dynamics are allowed to respond to market information. More specifically, we apply this model to examine the explanatory and predictive power of price range and trading volume for return volatility. Our findings indicate that a negative relation between equity market returns and volatility prevails even after having controlled for the time-varying determinants of conditional volatility within each regime. We also find an asymmetry in the effect of price range on intra- and inter-regime return volatility. While price range has a stronger effect in the high volatility state, it appears to significantly affect only the transition probabilities when the stock market is in the low volatility state but not in the high volatility state. Finally, we provide evidence consistent with the ‘rebound’ model of asset returns proposed by Samuelson (1991), suggesting that long-horizon investors are expected to invest more in risky assets than short-horizon investors.  相似文献   

9.
In this paper, we propose a class of infinite-dimensional phase-type distributions with finitely many parameters as models for heavy tailed distributions. The class of finite-dimensional phase-type distributions is dense in the class of distributions on the positive reals and may hence approximate any such distribution. We prove that formulas from renewal theory, and with a particular attention to ruin probabilities, which are true for common phase-type distributions also hold true for the infinite-dimensional case. We provide algorithms for calculating functionals of interest such as the renewal density and the ruin probability. It might be of interest to approximate a given heavy tailed distribution of some other type by a distribution from the class of infinite-dimensional phase-type distributions and to this end we provide a calibration procedure which works for the approximation of distributions with a slowly varying tail. An example from risk theory, comparing ruin probabilities for a classical risk process with Pareto distributed claim sizes, is presented and exact known ruin probabilities for the Pareto case are compared to the ones obtained by approximating by an infinite-dimensional hyper-exponential distribution.  相似文献   

10.
In this paper we study the ruin problem for insurance models that involve investments. Our risk reserve process is an extension of the classical Cramér-Lundberg model, which will contain stochastic interest rates, reserve-dependent expense loading, diffusion perturbed models, and many others as special cases. By introducing a new type of exponential martingale parametrized by a general rate function, we put various Cramér-Lundberg type estimations into a unified framework. We show by examples that many existing Lundberg-type bounds for ruin probabilities can be recovered by appropriately choosing the rate functions.  相似文献   

11.
We derive expressions for the density of the time to ruin given that ruin occurs in a Sparre Andersen model in which individual claim amounts are exponentially distributed and inter-arrival times are distributed as Erlang(n,?β). We provide numerical illustrations of finite time ruin probabilities, as well as illustrating features of the density functions.  相似文献   

12.
Abstract

This article considers the compound Poisson insurance risk model perturbed by diffusion with investment. We assume that the insurance company can invest its surplus in both a risky asset and the risk-free asset according to a fixed proportion. If the surplus is negative, a constant debit interest rate is applied. The absolute ruin probability function satisfies a certain integro-differential equation. In various special cases, closed-form solutions are obtained, and numerical illustrations are provided.  相似文献   

13.
In this paper, we first study orders, valid up to a certain positive initial surplus, between a pair of ruin probabilities resulting from two individual claim size random variables for corresponding continuous time surplus processes perturbed by diffusion. The results are then applied to obtain a smooth upper (lower) bound for the underlying ruin probability; the upper (lower) bound is constructed from exponentially distributed claims, provided that the mean residual lifetime function of the underlying random variable is non-decreasing (non-increasing). Finally, numerical examples are given to illustrate the constructed upper bounds for ruin probabilities with comparisons to some existing ones.  相似文献   

14.
Abstract

We determine the optimal investment strategy in a financial market for an individual whose random consumption is correlated with the price of a risky asset. Bayraktar and Young consider this problem and show that the minimum probability of lifetime ruin is the unique convex, smooth solution of its corresponding Hamilton-Jacobi-Bellman equation. In this paper we focus on determining the probability of lifetime ruin and the corresponding optimal investment strategy. We obtain approximations for the probability of lifetime ruin for small values of certain parameters and demonstrate numerically that they are reasonable ones. We also obtain numerical results in cases for which those parameters are not small.  相似文献   

15.
Abstract

We assume that an agent’s rate of consumption is ratcheted; that is, it forms a nondecreasing process. We assume that the agent invests in a financial market with one riskless and one risky asset, with the latter’s price following geometric Brownian motion as in the Black-Scholes model. Given the rate of consumption, we act as financial advisers and find the optimal investment strategy for the agent who wishes to minimize his probability of ruin. To solve this minimization problem, we use techniques from stochastic optimal control.  相似文献   

16.
A large part of the actuarial literature is devoted to the derivation of ruin probabilities in various non-life insurance risk models. On the contrary, very few papers deal with ruin probabilities for life insurance portfolios. The difficulties arise from the dependence and non-stationarity of the annual payments made by the insurance company. This paper shows that the ruin probability in case of life annuity portfolios can be computed from algorithms derived by De Pril (1989) and Dhaene & Vandebroek (1995). Approximations for ruin probabilities are discussed. The present article complements the works of Frostig et al. (2003) who considered whole life, endowment, and temporary assurances, and of Denuit & Frostig (2008) who considered homogeneous life annuities portfolios. Here, heterogeneous portfolios (with respect to age and/or face amounts) are studied. Particular attention is paid to the capital allocation problem. The total amount of reserve is shared among the risk classes in order to minimize the ruin probability. It is then fair to charge a higher margin to the risk classes requiring more capital.  相似文献   

17.
We consider a Markov-modulated risk model in which the claim inter-arrivals, amounts and premiums are influenced by an external Markovian environment process. A system of Laplace transforms of the probabilities of the severity of ruin, given the initial environment state, is established from a system of integro-differential equations derived by Snoussi [The severity of ruin in Markov-modulated risk models Schweiz Aktuarver. Mitt., 2002, 1, 31–43]. In the two-state model, explicit formulas for probabilities of the severity of ruin are derived, when the initial reserve is zero or when both claim amount distributions are from the rational family. Numerical illustrations are also given.  相似文献   

18.
In this paper, the asymptotic decay of finite time ruin probabilities is studied. An insurance company is considered that faces heavy-tailed claims and makes investments in risky assets whose prices evolve according to quite general semimartingales. In this setting, the ruin problem corresponds to determining hitting probabilities for the solution to a randomly perturbed stochastic integral equation. A large deviation result for the hitting probabilities is derived that holds uniformly over a family of semimartingales. This result gives the asymptotic decay of finite time ruin probabilities under sufficiently conservative investment strategies, including ruin-minimizing strategies. In particular, as long as the insurance company invests sufficiently conservatively, the investment strategy has only a moderate impact on the asymptotics of the ruin probability.  相似文献   

19.
We model the risky asset as driven by a pure jump process, with non-trivial and tractable higher moments. We compute the optimal portfolio strategy of an investor with CRRA utility and study the sensitivity of the investment in the risky asset to the higher moments, as well as the resulting wealth loss from ignoring higher moments. We find that ignoring higher moments can lead to significant overinvestment in risky securities, especially when volatility is high.   相似文献   

20.
This paper is devoted to evaluating the optimal self-financing strategy and the optimal trading frequency for a portfolio with a risky asset and a risk-free asset. The objective is to maximize the expected future utility of the terminal wealth in a stochastic volatility setting, when transaction costs are incurred at each discrete trading time. A HARA utility function is used, allowing a simple approximation of the optimization problem, which is implementable forward in time. For each of various transaction cost rates, we find the optimal trading frequency, i.e. the one that attains the maximum of the expected utility at time zero. We study the relation between transaction cost rate and optimal trading frequency. The numerical method used is based on a stochastic volatility particle filtering algorithm, combined with a Monte-Carlo method. The filtering algorithm updates the estimate of the volatility distribution forward in time, as new stock observations arrive; these updates are used at each of these discrete times to compute the new portfolio allocation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号