首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到3条相似文献,搜索用时 0 毫秒
1.
This paper outlines a strategy to validate multiple imputation methods. Rubin's criteria for proper multiple imputation are the point of departure. We describe a simulation method that yields insight into various aspects of bias and efficiency of the imputation process. We propose a new method for creating incomplete data under a general Missing At Random (MAR) mechanism. Software implementing the validation strategy is available as a SAS/IML module. The method is applied to investigate the behavior of polytomous regression imputation for categorical data.  相似文献   

2.
This paper discusses the importance of managing data quality in academic research in its relation to satisfying the customer. This focus is on the data completeness objectivedimension of data quality in relation to recent advancements which have been made in the development of methods for analysing incomplete multivariate data. An overview and comparison of the traditional techniques with the recent advancements are provided. Multiple imputation is also discussed as a method of analysing incomplete multivariate data, which can potentially reduce some of the biases which can occur from using some of the traditional techniques. Despite these recent advancements in the analysis of incomplete multivariate data, evidence is presented which shows that researchers are not using these techniques to manage the data quality of their current research across a variety of academic disciplines. An analysis is then provided as to why these techniques have not been adopted along with suggestions to improve the frequency of their use in the future. Source-Reference. The ideas for this paper originated from research work on David J. Fogarty's Ph.D. dissertation. The subject area is the use of advanced techniques for the imputation of incomplete multivariate data on corporate data warehouses.  相似文献   

3.
Incomplete data is a common problem of survey research. Recent work on multiple imputation techniques has increased analysts’ awareness of the biasing effects of missing data and has also provided a convenient solution. Imputation methods replace non-response with estimates of the unobserved scores. In many instances, however, non-response to a stimulus does not result from measurement problems that inhibit accurate surveying of empirical reality, but from the inapplicability of the survey question. In such cases, existing imputation techniques replace valid non-response with counterfactual estimates of a situation in which the stimulus is applicable to all respondents. This paper suggests an alternative imputation procedure for incomplete data for which no true score exists: multiple complete random imputation, which overcomes the biasing effects of missing data and allows analysts to model respondents’ valid ‘I don’t know’ answers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号