首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
Many investment models in discrete or continuous‐time settings boil down to maximizing an objective of the quantile function of the decision variable. This quantile optimization problem is known as the quantile formulation of the original investment problem. Under certain monotonicity assumptions, several schemes to solve such quantile optimization problems have been proposed in the literature. In this paper, we propose a change‐of‐variable and relaxation method to solve the quantile optimization problems without using the calculus of variations or making any monotonicity assumptions. The method is demonstrated through a portfolio choice problem under rank‐dependent utility theory (RDUT). We show that this problem is equivalent to a classical Merton's portfolio choice problem under expected utility theory with the same utility function but a different pricing kernel explicitly determined by the given pricing kernel and probability weighting function. With this result, the feasibility, well‐posedness, attainability, and uniqueness issues for the portfolio choice problem under RDUT are solved. It is also shown that solving functional optimization problems may reduce to solving probabilistic optimization problems. The method is applicable to general models with law‐invariant preference measures including portfolio choice models under cumulative prospect theory (CPT) or RDUT, Yaari's dual model, Lopes' SP/A model, and optimal stopping models under CPT or RDUT.  相似文献   

2.
This paper explores investment and exit decisions under uncertainty when the entrepreneur has anticipatory utility, which leads to the time‐inconsistency problem. Our model predicts that anticipatory utility has ambiguous effects on the investment strategy, which depends on the form of the project’s payoff. Under a lump‐sum payoff, an entrepreneur with anticipatory utility will under‐invest. However, she prefers over‐investing if the project delivers a flow payoff. Moreover, the model predicts that an entrepreneur with anticipatory utility is more reluctant to abandon an existing project. Finally, our model provides theoretical support and alternative explanation for the empirical evidence that people procrastinate to terminate projects from the perspective of time‐inconsistent preferences.  相似文献   

3.
We study a robust portfolio optimization problem under model uncertainty for an investor with logarithmic or power utility. The uncertainty is specified by a set of possible Lévy triplets, that is, possible instantaneous drift, volatility, and jump characteristics of the price process. We show that an optimal investment strategy exists and compute it in semi‐closed form. Moreover, we provide a saddle point analysis describing a worst‐case model.  相似文献   

4.
This paper introduces a dual problem to study a continuous‐time consumption and investment problem with incomplete markets and Epstein–Zin stochastic differential utilities. Duality between the primal and dual problems is established. Consequently, the optimal strategy of this consumption and investment problem is identified without assuming several technical conditions on market models, utility specifications, and agent's admissible strategies. Meanwhile, the minimizer of the dual problem is identified as the utility gradient of the primal value and is economically interpreted as the “least favorable” completion of the market.  相似文献   

5.
In this paper, we investigate the pricing via utility indifference of the right to sell a non‐traded asset. Consider an agent with power utility who owns a single unit of an indivisible, non‐traded asset, and who wishes to choose the optimum time to sell this asset. Suppose that this right to sell forms just part of the wealth of the agent, and that other wealth may be invested in a complete frictionless market. We formulate the problem as a mixed stochastic control/optimal stopping problem, which we then solve. We determine the optimal behavior of the agent, including the optimal criteria for the timing of the sale. It turns out that the optimal strategy is to sell the non‐traded asset the first time that its value exceeds a certain proportion of the agent's trading wealth. Further, it is possible to characterize this proportion as the solution to a transcendental equation.  相似文献   

6.
We study the problem of maximizing terminal utility for an agent facing model uncertainty, in a frictionless discrete‐time market with one safe asset and finitely many risky assets. We show that an optimal investment strategy exists if the utility function, defined either on the positive real line or on the whole real line, is bounded from above. We further find that the boundedness assumption can be dropped, provided that we impose suitable integrability conditions, related to some strengthened form of no‐arbitrage. These results are obtained in an alternative framework for model uncertainty, where all possible dynamics of the stock prices are represented by a collection of stochastic processes on the same filtered probability space, rather than by a family of probability measures.  相似文献   

7.
The problem of robust utility maximization in an incomplete market with volatility uncertainty is considered, in the sense that the volatility of the market is only assumed to lie between two given bounds. The set of all possible models (probability measures) considered here is nondominated. We propose studying this problem in the framework of second‐order backward stochastic differential equations (2BSDEs for short) with quadratic growth generators. We show for exponential, power, and logarithmic utilities that the value function of the problem can be written as the initial value of a particular 2BSDE and prove existence of an optimal strategy. Finally, several examples which shed more light on the problem and its links with the classical utility maximization one are provided. In particular, we show that in some cases, the upper bound of the volatility interval plays a central role, exactly as in the option pricing problem with uncertain volatility models.  相似文献   

8.
We consider a portfolio/consumption choice problem in a market model with liquidity risk. The main feature is that the investor can trade and observe stock prices only at exogenous Poisson arrival times. He may also consume continuously from his cash holdings, and his goal is to maximize his expected utility from consumption. This is a mixed discrete/continuous stochastic control problem, non‐standard in the literature. The dynamic programming principle leads to a coupled system of Integro‐Differential Equations (IDE), and we provide a convergent numerical algorithm for the resolution to this coupled system of IDE. Several numerical experiments illustrate the impact of the restricted liquidity trading opportunities, and we measure in particular the utility loss with respect to the classical Merton consumption problem.  相似文献   

9.
We provide an asymptotic expansion of the value function of a multidimensional utility maximization problem from consumption with small nonlinear price impact. In our model, cross‐impacts between assets are allowed. In the limit for small price impact, we determine the asymptotic expansion of the value function around its frictionless version. The leading order correction is characterized by a nonlinear second‐order PDE related to an ergodic control problem and a linear parabolic PDE. We illustrate our result on a multivariate geometric Brownian motion price model.  相似文献   

10.
This paper focuses on the two‐sector neo‐Kaleckian model of growth and distribution that was developed by Dutt (1990) and challenged by Park (1995). We develop a variant of this model, focusing on the supply‐side to solve the overdetermination problem that was raised by Park. Finally, we introduce evolutionary dynamics to model the investment flows between the capital and consumer goods sectors. In this setup, the sectoral profit rates and the size of capital stocks wield an essential role upon the entrepreneur’s decision on which sector to invest in. This model is perfectly determined and it generates a stable evolutionary equilibrium over the long term.  相似文献   

11.
We consider an optimal insurance design problem for an individual whose preferences are dictated by the rank‐dependent expected utility (RDEU) theory with a concave utility function and an inverse‐S shaped probability distortion function. This type of RDEU is known to describe human behavior better than the classical expected utility. By applying the technique of quantile formulation, we solve the problem explicitly. We show that the optimal contract not only insures large losses above a deductible but also insures small losses fully. This is consistent, for instance, with the demand for warranties. Finally, we compare our results, analytically and numerically, both to those in the expected utility framework and to cases in which the distortion function is convex or concave.  相似文献   

12.
We consider an optimal investment problem with intermediate consumption and random endowment, in an incomplete semimartingale model of the financial market. We establish the key assertions of the utility maximization theory, assuming that both primal and dual value functions are finite in the interiors of their domains and that the random endowment at maturity can be dominated by the terminal value of a self‐financing wealth process. In order to facilitate the verification of these conditions, we present alternative, but equivalent conditions, under which the conclusions of the theory hold.  相似文献   

13.
We study the optimal investment problem for a behavioral investor in an incomplete discrete‐time multiperiod financial market model. For the first time in the literature, we provide easily verifiable and interpretable conditions for well‐posedness. Under two different sets of assumptions, we also establish the existence of optimal strategies.  相似文献   

14.
We study the effect of estimated model parameters in investment strategies on expected log‐utility of terminal wealth. The market consists of a riskless bond and a potentially vast number of risky stocks modeled as geometric Brownian motions. The well‐known optimal Merton strategy depends on unknown parameters and thus cannot be used in practice. We consider the expected utility of several estimated strategies when the number of risky assets gets large. We suggest strategies which are less affected by estimation errors and demonstrate their performance in a real data example. Strategies in which the investment proportions satisfy an L1 ‐constraint are less affected by estimation effects.  相似文献   

15.
We study Arrow–Debreu equilibria for a one‐period‐two‐date pure exchange economy with rank‐dependent utility agents having heterogeneous probability weighting and outcome utility functions. In particular, we allow the economy to have a mix of expected utility agents and rank‐dependent utility ones, with nonconvex probability weighting functions. The standard approach for convex economy equilibria fails due to the incompatibility with second‐order stochastic dominance. The representative agent approach devised in Xia and Zhou (2016) does not work either due to the heterogeneity of the weighting functions. We overcome these difficulties by considering the comonotone allocations, on which the rank‐dependent utilities become concave. Accordingly, we introduce the notion of comonotone Pareto optima, and derive their characterizing conditions. With the aid of the auxiliary problem of price equilibria with transfers, we provide a sufficient condition in terms of the model primitives under which an Arrow–Debreu equilibrium exists, along with the explicit expression of the state‐price density in equilibrium. This new, general sufficient condition distinguishes the paper from previous related studies with homogeneous and/or convex probability weightings.  相似文献   

16.
A financial market model with general semimartingale asset–price processes and where agents can only trade using no‐short‐sales strategies is considered. We show that wealth processes using continuous trading can be approximated very closely by wealth processes using simple combinations of buy‐and‐hold trading. This approximation is based on controlling the proportions of wealth invested in the assets. As an application, the utility maximization problem is considered and it is shown that optimal expected utilities and wealth processes resulting from continuous trading can be approximated arbitrarily well by the use of simple combinations of buy‐and‐hold strategies.  相似文献   

17.
Default risk significantly affects the corporate policies of a firm. We develop a model in which a limited liability entity subject to default at an exponential random time jointly sets its dividend policy and capital structure to maximize the expected lifetime utility from consumption of risk‐averse equity investors. We give a complete characterization of the solution to the singular stochastic control problem. The optimal policy involves paying dividends to keep the ratio of firm's equity value to investors' wealth below a critical threshold. Dividend payout acts as a precautionary channel to transfer wealth from the firm to investors for mitigation of losses in the event of default. Higher the default risk, more aggressively the firm leverages and pays dividends.  相似文献   

18.
We provide an extension of the explicit solution of a mixed optimal stopping–optimal stochastic control problem introduced by Henderson and Hobson. The problem examines whether the optimal investment problem on a local martingale financial market is affected by the optimal liquidation of an independent indivisible asset. The indivisible asset process is defined by a homogeneous scalar stochastic differential equation, and the investor's preferences are defined by a general expected utility function. The value function is obtained in explicit form, and we prove the existence of an optimal stopping–investment strategy characterized as the limit of an explicit maximizing strategy. Our approach is based on the standard dynamic programming approach.  相似文献   

19.
We perform a stability analysis for the utility maximization problem in a general semimartingale model where both liquid and illiquid assets (random endowments) are present. Small misspecifications of preferences (as modeled via expected utility), as well as views of the world or the market model (as modeled via subjective probabilities) are considered. Simple sufficient conditions are given for the problem to be well posed, in the sense that the optimal wealth and the marginal utility‐based prices are continuous functionals of preferences and probabilistic views.  相似文献   

20.
We study a problem of optimal investment/consumption over an infinite horizon in a market with two possibly correlated assets: one liquid and one illiquid. The liquid asset is observed and can be traded continuously, while the illiquid one can be traded only at discrete random times, corresponding to the jumps of a Poisson process with intensity λ, is observed at the trading dates, and is partially observed between two different trading dates. The problem is a nonstandard mixed discrete/continuous optimal control problem, which we solve by a dynamic programming approach. When the utility has a general form, we prove that the value function is the unique viscosity solution of the associated Hamilton–Jacobi–Bellman equation and characterize the optimal allocation in the illiquid asset. In the case of power utility, we establish the regularity of the value function needed to prove the verification theorem, providing the complete theoretical solution of the problem. This enables us to perform numerical simulations, so as to analyze the impact of time illiquidity and how this impact is affected by the degree of observation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号