共查询到20条相似文献,搜索用时 15 毫秒
1.
Andrea Carriero George Kapetanios Massimiliano Marcellino 《Journal of Applied Econometrics》2011,26(5):735-761
The paper addresses the issue of forecasting a large set of variables using multivariate models. In particular, we propose three alternative reduced rank forecasting models and compare their predictive performance for US time series with the most promising existing alternatives, namely, factor models, large‐scale Bayesian VARs, and multivariate boosting. Specifically, we focus on classical reduced rank regression, a two‐step procedure that applies, in turn, shrinkage and reduced rank restrictions, and the reduced rank Bayesian VAR of Geweke ( 1996 ). We find that using shrinkage and rank reduction in combination rather than separately improves substantially the accuracy of forecasts, both when the whole set of variables is to be forecast and for key variables such as industrial production growth, inflation, and the federal funds rate. The robustness of this finding is confirmed by a Monte Carlo experiment based on bootstrapped data. We also provide a consistency result for the reduced rank regression valid when the dimension of the system tends to infinity, which opens the way to using large‐scale reduced rank models for empirical analysis. Copyright © 2010 John Wiley & Sons, Ltd. 相似文献
2.
《International Journal of Forecasting》2020,36(4):1488-1500
We analyze the narratives that accompany the numerical forecasts in the Bank of England’s Quarterly Inflation Reports, 1997–2018. We focus on whether the narratives contain useful information about the future course of key macro variables over and above the point predictions, in terms of whether the narratives can be used to enhance the accuracy of the numerical forecasts. We also consider whether the narratives are able to predict future changes in the numerical forecasts. We find that a measure of sentiment derived from the narratives can predict the errors in the numerical forecasts of output growth, but not of inflation. We find no evidence that past changes in sentiment predict subsequent changes in the point forecasts of output growth or of inflation, but do find that the adjustments to the numerical output growth forecasts have a systematic element. 相似文献
3.
Ana Corberán-ValletJosé D. Bermúdez Enriqueta Vercher 《International Journal of Forecasting》2011,27(2):252
This paper presents the Bayesian analysis of a general multivariate exponential smoothing model that allows us to forecast time series jointly, subject to correlated random disturbances. The general multivariate model, which can be formulated as a seemingly unrelated regression model, includes the previously studied homogeneous multivariate Holt-Winters’ model as a special case when all of the univariate series share a common structure. MCMC simulation techniques are required in order to approach the non-analytically tractable posterior distribution of the model parameters. The predictive distribution is then estimated using Monte Carlo integration. A Bayesian model selection criterion is introduced into the forecasting scheme for selecting the most adequate multivariate model for describing the behaviour of the time series under study. The forecasting performance of this procedure is tested using some real examples. 相似文献
4.
Jörg D. Wichard 《International Journal of Forecasting》2011,27(3):700
We propose a simple way of predicting time series with recurring seasonal periods. Missing values of the time series are estimated and interpolated in a preprocessing step. We combine several forecasting methods by taking the weighted mean of forecasts that were generated with time-domain models which were validated on left-out parts of the time series. The hybrid model is a combination of a neural network ensemble, an ensemble of nearest trajectory models and a model for the 7-day cycle. We apply this approach to the NN5 time series competition data set. 相似文献
5.
Prasad V. Bidarkota 《International Journal of Forecasting》1998,14(4):1403
Does the use of information on the past history of the nominal interest rates and inflation entail improvement in forecasts of the ex ante real interest rate over its forecasts obtained from using just the past history of the realized real interest rates? To answer this question we set up a univariate unobserved components model for the realized real interest rates and a bivariate model for the nominal rate and inflation which imposes cointegration restrictions between them. The two models are estimated under normality with the Kalman filter. It is found that the error-correction model provides more accurate one-period ahead forecasts of the real rate within the estimation sample whereas the unobserved components model yields forecasts with smaller forecast variances. In the post-sample period, the forecasts from the bivariate model are not only more accurate but also have tighter confidence bounds than the forecasts from the unobserved components model. 相似文献
6.
Linear models, smooth transition autoregressions, and neural networks for forecasting macroeconomic time series: A re-examination 总被引:5,自引:0,他引:5
In this paper, we examine the forecast accuracy of linear autoregressive, smooth transition autoregressive (STAR), and neural network (NN) time series models for 47 monthly macroeconomic variables of the G7 economies. Unlike previous studies that typically consider multiple but fixed model specifications, we use a single but dynamic specification for each model class. The point forecast results indicate that the STAR model generally outperforms linear autoregressive models. It also improves upon several fixed STAR models, demonstrating that careful specification of nonlinear time series models is of crucial importance. The results for neural network models are mixed in the sense that at long forecast horizons, an NN model obtained using Bayesian regularization produces more accurate forecasts than a corresponding model specified using the specific-to-general approach. Reasons for this outcome are discussed. 相似文献
7.
《International Journal of Forecasting》2019,35(4):1735-1747
We introduce a mixed-frequency score-driven dynamic model for multiple time series where the score contributions from high-frequency variables are transformed by means of a mixed-data sampling weighting scheme. The resulting dynamic model delivers a flexible and easy-to-implement framework for the forecasting of low-frequency time series variables through the use of timely information from high-frequency variables. We verify the in-sample and out-of-sample performances of the model in an empirical study on the forecasting of U.S. headline inflation and GDP growth. In particular, we forecast monthly headline inflation using daily oil prices and quarterly GDP growth using a measure of financial risk. The forecasting results and other findings are promising. Our proposed score-driven dynamic model with mixed-data sampling weighting outperforms competing models in terms of both point and density forecasts. 相似文献
8.
《Socio》2023
In this article we propose to exploit topological information embedded in forecast error variance decomposition derived from large Bayesian vector autoregressive models (VAR) to study network connectedness and risk transmission of multivariate time series observations. Firstly, we design a robust link classification procedure based on shortest paths, so to identify salient directional spillovers in a high-dimensional framework. Secondly, we study recurrent and statistically significant sub-graphs, i.e. network motifs, on the induced network backbone by means of null models which account for local node heterogeneity. The methodology is applied to analyze spillover networks of a set of global commodity prices. We demonstrate that spillovers become key drivers of the system variance during commodity price bubbles and bursts, giving raise to complex triadic structures which do not manifest during normal business periods. By accounting for local node connectivity, we observe a departure from the null models due to the high participation of Crude Oil, Food and Beverages and Raw Materials in complex recurrent sub-graphs. 相似文献
9.
《International Journal of Forecasting》2014,30(4):996-1015
In a data-rich environment, forecasting economic variables amounts to extracting and organizing useful information from a large number of predictors. So far, the dynamic factor model and its variants have been the most successful models for such exercises. In this paper, we investigate a category of LASSO-based approaches and evaluate their predictive abilities for forecasting twenty important macroeconomic variables. These alternative models can handle hundreds of data series simultaneously, and extract useful information for forecasting. We also show, both analytically and empirically, that combing forecasts from LASSO-based models with those from dynamic factor models can reduce the mean square forecast error (MSFE) further. Our three main findings can be summarized as follows. First, for most of the variables under investigation, all of the LASSO-based models outperform dynamic factor models in the out-of-sample forecast evaluations. Second, by extracting information and formulating predictors at economically meaningful block levels, the new methods greatly enhance the interpretability of the models. Third, once forecasts from a LASSO-based approach are combined with those from a dynamic factor model by forecast combination techniques, the combined forecasts are significantly better than either dynamic factor model forecasts or the naïve random walk benchmark. 相似文献
10.
We introduce test statistics based on generalized empirical likelihood methods that can be used to test simple hypotheses involving the unknown parameter vector in moment condition time series models. The test statistics generalize those in Guggenberger and Smith [2005. Generalized empirical likelihood estimators and tests under partial, weak and strong identification. Econometric Theory 21 (4), 667–709] from the i.i.d. to the time series context and are alternatives to those in Kleibergen [2005a. Testing parameters in GMM without assuming that they are identified. Econometrica 73 (4), 1103–1123] and Otsu [2006. Generalized empirical likelihood inference for nonlinear and time series models under weak identification. Econometric Theory 22 (3), 513–527]. The main feature of these tests is that their empirical null rejection probabilities are not affected much by the strength or weakness of identification. More precisely, we show that the statistics are asymptotically distributed as chi-square under both classical asymptotic theory and weak instrument asymptotics of Stock and Wright [2000. GMM with weak identification. Econometrica 68 (5), 1055–1096]. We also introduce a modification to Otsu's (2006) statistic that is computationally more attractive. A Monte Carlo study reveals that the finite-sample performance of the suggested tests is very competitive. 相似文献
11.
This paper studies the role of non-pervasive shocks when forecasting with factor models. To this end, we first introduce a new model that incorporates the effects of non-pervasive shocks, an Approximate Dynamic Factor Model with a sparse model for the idiosyncratic component. Then, we test the forecasting performance of this model both in simulations, and on a large panel of US quarterly data. We find that, when the goal is to forecast a disaggregated variable, which is usually affected by regional or sectorial shocks, it is useful to capture the dynamics generated by non-pervasive shocks; however, when the goal is to forecast an aggregate variable, which responds primarily to macroeconomic, i.e. pervasive, shocks, accounting for non-pervasive shocks is not useful. 相似文献
12.
Estimation and model adequacy checking for multivariate seasonal autoregressive time series models with periodically varying parameters 总被引:1,自引:0,他引:1
We introduce a class of multivariate seasonal time series models with periodically varying parameters, abbreviated by the acronym SPVAR. The model is suitable for multivariate data, and combines a periodic autoregressive structure and a multiplicative seasonal time series model. The stationarity conditions (in the periodic sense) and the theoretical autocovariance functions of SPVAR stochastic processes are derived. Estimation and checking stages are considered. The asymptotic normal distribution of the least squares estimators of the model parameters is established, and the asymptotic distributions of the residual autocovariance and autocorrelation matrices in the class of SPVAR time series models are obtained. In order to check model adequacy, portmanteau test statistics are considered and their asymptotic distributions are studied. A simulation study is briefly discussed to investigate the finite-sample properties of the proposed test statistics. The methodology is illustrated with a bivariate quarterly data set on travelers entering in to Canada. 相似文献
13.
《International Journal of Forecasting》2023,39(3):1078-1096
Many static and dynamic models exist to forecast Value-at-Risk and other quantile-related metrics used in financial risk management. Industry practice favours simpler, static models such as historical simulation or its variants. Most academic research focuses on dynamic models in the GARCH family. While numerous studies examine the accuracy of multivariate models for forecasting risk metrics, there is little research on accurately predicting the entire multivariate distribution. However, this is an essential element of asset pricing or portfolio optimization problems having non-analytic solutions. We approach this highly complex problem using various proper multivariate scoring rules to evaluate forecasts of eight-dimensional multivariate distributions: exchange rates, interest rates and commodity futures. This way, we test the performance of static models, namely, empirical distribution functions and a new factor-quantile model with commonly used dynamic models in the asymmetric multivariate GARCH class. 相似文献
14.
Modeling conditional distributions in time series has attracted increasing attention in economics and finance. We develop a new class of generalized Cramer–von Mises (GCM) specification tests for time series conditional distribution models using a novel approach, which embeds the empirical distribution function in a spectral framework. Our tests check a large number of lags and are therefore expected to be powerful against neglected dynamics at higher order lags, which is particularly useful for non-Markovian processes. Despite using a large number of lags, our tests do not suffer much from loss of a large number of degrees of freedom, because our approach naturally downweights higher order lags, which is consistent with the stylized fact that economic or financial markets are more affected by recent past events than by remote past events. Unlike the existing methods in the literature, the proposed GCM tests cover both univariate and multivariate conditional distribution models in a unified framework. They exploit the information in the joint conditional distribution of underlying economic processes. Moreover, a class of easy-to-interpret diagnostic procedures are supplemented to gauge possible sources of model misspecifications. Distinct from conventional CM and Kolmogorov–Smirnov (KS) tests, which are also based on the empirical distribution function, our GCM test statistics follow a convenient asymptotic distribution and enjoy the appealing “nuisance parameter free” property that parameter estimation uncertainty has no impact on the asymptotic distribution of the test statistics. Simulation studies show that the tests provide reliable inference for sample sizes often encountered in economics and finance. 相似文献
15.
Baris Serifsoy 《Economics of Governance》2008,9(4):305-339
We employ a balanced panel data set of 28 stock exchanges to disentangle the effects of demutualization and outsider ownership
on the operative performance of stock exchanges. For this purpose we calculate in a first step individual efficiency and factor
productivity values via Data Envelopment Analysis. In a second step we regress the derived values on variables that—amongst
others—represent the different governance regimes of exchanges in order to examine technical efficiency and factor productivity
differences between (1) mutuals, (2) demutualized but customer-owned exchanges, and (3) publicly listed and thus at least
partly outsider-owned exchanges. We find evidence that demutualized exchanges exhibit higher technical efficiency than mutuals.
However, they perform relatively poor as far as productivity growth is concerned. Furthermore, we find no evidence that publicly
listed exchanges possess higher efficiency and productivity values than demutualized exchanges with a customer-dominated structure.
相似文献
16.
《International Journal of Forecasting》2019,35(1):67-79
We examine the conditions under which each individual series that is generated by a vector autoregressive model can be represented as an autoregressive model that is augmented with the lags of a few linear combinations of all the variables in the system. We call this multivariate index-augmented autoregression (MIAAR) modelling. We show that the parameters of the MIAAR can be estimated by a switching algorithm that increases the Gaussian likelihood at each iteration. Since maximum likelihood estimation may perform poorly when the number of parameters increases, we propose a regularized version of our algorithm for handling a medium–large number of time series. We illustrate the usefulness of the MIAAR modelling by both empirical applications and simulations. 相似文献
17.
Nine macroeconomic variables are forecast in a real-time scenario using a variety of flexible specification, fixed specification, linear, and nonlinear econometric models. All models are allowed to evolve through time, and our analysis focuses on model selection and performance. In the context of real-time forecasts, flexible specification models (including linear autoregressive models with exogenous variables and nonlinear artificial neural networks) appear to offer a useful and viable alternative to less flexible fixed specification linear models for a subset of the economic variables which we examine, particularly at forecast horizons greater than 1-step ahead. We speculate that one reason for this result is that the economy is evolving (rather slowly) over time. This feature cannot easily be captured by fixed specification linear models, however, and manifests itself in the form of evolving coefficient estimates. We also provide additional evidence supporting the claim that models which ‘win’ based on one model selection criterion (say a squared error measure) do not necessarily win when an alternative selection criterion is used (say a confusion rate measure), thus highlighting the importance of the particular cost function which is used by forecasters and ‘end-users’ to evaluate their models. A wide variety of different model selection criteria and statistical tests are used to illustrate our findings. 相似文献
18.
Evidence from a large and growing body of empirical literature strongly suggests that there have been changes in the inflation and output dynamics in the United Kingdom. The majority of these papers base their results on a class of econometric models that allows for time-variation in the coefficients and volatilities of shocks. While these models have been used extensively for studying evolving dynamics and for structural analysis, there has been little evidence that they are useful for forecasting UK output growth and inflation. This paper attempts to fill this gap by comparing the performances of a wide range of time-varying parameter models in forecasting output growth and inflation. We find that allowing for time-varying parameters can lead to large and statistically significant gains in forecast accuracy. 相似文献
19.
David Ardia Keven Bluteau Kris Boudt Leopoldo Catania 《International Journal of Forecasting》2018,34(4):733-747
We perform a large-scale empirical study in order to compare the forecasting performances of single-regime and Markov-switching () models from a risk management perspective. We find that models yield more accurate Value-at-Risk, expected shortfall, and left-tail distribution forecasts than their single-regime counterparts for daily, weekly, and ten-day equity log-returns. Also, our results indicate that accounting for parameter uncertainty improves the left-tail predictions, independently of the inclusion of the Markov-switching mechanism. 相似文献
20.
Forecast combinations of computational intelligence and linear models for the NN5 time series forecasting competition 总被引:1,自引:0,他引:1
Robert R. AndrawisAuthor Vitae Hisham El-ShishinyAuthor Vitae 《International Journal of Forecasting》2011,27(3):672
In this work we introduce the forecasting model with which we participated in the NN5 forecasting competition (the forecasting of 111 time series representing daily cash withdrawal amounts at ATM machines). The main idea of this model is to utilize the concept of forecast combination, which has proven to be an effective methodology in the forecasting literature. In the proposed system we attempted to follow a principled approach, and make use of some of the guidelines and concepts that are known in the forecasting literature to lead to superior performance. For example, we considered various previous comparison studies and time series competitions as guidance in determining which individual forecasting models to test (for possible inclusion in the forecast combination system). The final model ended up consisting of neural networks, Gaussian process regression, and linear models, combined by simple average. We also paid extra attention to the seasonality aspect, decomposing the seasonality into weekly (which is the strongest one), day of the month, and month of the year seasonality. 相似文献