首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this paper, we introduce a new Poisson mixture model for count panel data where the underlying Poisson process intensity is determined endogenously by consumer latent utility maximization over a set of choice alternatives. This formulation accommodates the choice and count in a single random utility framework with desirable theoretical properties. Individual heterogeneity is introduced through a random coefficient scheme with a flexible semiparametric distribution. We deal with the analytical intractability of the resulting mixture by recasting the model as an embedding of infinite sequences of scaled moments of the mixing distribution, and newly derive their cumulant representations along with bounds on their rate of numerical convergence. We further develop an efficient recursive algorithm for fast evaluation of the model likelihood within a Bayesian Gibbs sampling scheme. We apply our model to a recent household panel of supermarket visit counts. We estimate the nonparametric density of three key variables of interest-price, driving distance, and their interaction-while controlling for a range of consumer demographic characteristics. We use this econometric framework to assess the opportunity cost of time and analyze the interaction between store choice, trip frequency, search intensity, and household and store characteristics. We also conduct a counterfactual welfare experiment and compute the compensating variation for a 10%-30% increase in Walmart prices.  相似文献   

2.
In this paper, we introduce a new flexible mixed model for multinomial discrete choice where the key individual- and alternative-specific parameters of interest are allowed to follow an assumption-free nonparametric density specification, while other alternative-specific coefficients are assumed to be drawn from a multivariate Normal distribution, which eliminates the independence of irrelevant alternatives assumption at the individual level. A hierarchical specification of our model allows us to break down a complex data structure into a set of submodels with the desired features that are naturally assembled in the original system. We estimate the model, using a Bayesian Markov Chain Monte Carlo technique with a multivariate Dirichlet Process (DP) prior on the coefficients with nonparametrically estimated density. We employ a “latent class” sampling algorithm, which is applicable to a general class of models, including non-conjugate DP base priors. The model is applied to supermarket choices of a panel of Houston households whose shopping behavior was observed over a 24-month period in years 2004–2005. We estimate the nonparametric density of two key variables of interest: the price of a basket of goods based on scanner data, and driving distance to the supermarket based on their respective locations. Our semi-parametric approach allows us to identify a complex multi-modal preference distribution, which distinguishes between inframarginal consumers and consumers who strongly value either lower prices or shopping convenience.  相似文献   

3.
We present examples based on actual and synthetic datasets to illustrate how simulation methods can mask identification problems in the estimation of discrete choice models such as mixed logit. Simulation methods approximate an integral (without a closed form) by taking draws from the underlying distribution of the random variable of integration. Our examples reveal how a low number of draws can generate estimates that appear identified, but in fact, are either not theoretically identified by the model or not empirically identified by the data. For the particular case of maximum simulated likelihood estimation, we investigate the underlying source of the problem by focusing on the shape of the simulated log-likelihood function under different conditions.  相似文献   

4.
This paper studies the limit distributions of Monte Carlo estimators of diffusion processes. We examine two types of estimators based on the Euler scheme, one applied to the original processes, the other to a Doss transformation of the processes. We show that the transformation increases the speed of convergence of the Euler scheme. We also study estimators of conditional expectations of diffusions. After characterizing expected approximation errors, we construct second-order bias-corrected estimators. We also derive new convergence results for the Mihlstein scheme. Illustrations of the results are provided in the context of simulation-based estimation of diffusion processes.  相似文献   

5.
This paper considers parametric inference in a wide range of structural econometric models. It illustrates how the indirect inference principle can be used in the inference of these models. Specifically, we show that an ordinary least squares (OLS) estimation can be used as an auxiliary model, which leads to a method that is similar in spirit to a two-stage least squares (2SLS) estimator. Monte Carlo studies and an empirical analysis of timber sale auctions held in Oregon illustrate the usefulness and feasibility of our approach.  相似文献   

6.
I propose a quasi-maximum likelihood framework for estimating nonlinear models with continuous or discrete endogenous explanatory variables. Joint and two-step estimation procedures are considered. The joint procedure is a quasi-limited information maximum likelihood procedure, as one or both of the log likelihoods may be misspecified. The two-step control function approach is computationally simple and leads to straightforward tests of endogeneity. In the case of discrete endogenous explanatory variables, I argue that the control function approach can be applied with generalized residuals to obtain average partial effects. I show how the results apply to nonlinear models for fractional and nonnegative responses.  相似文献   

7.
In a sample selection or treatment effects model, common unobservables may affect both the outcome and the probability of selection in unknown ways. This paper shows that the distribution function of potential outcomes, conditional on covariates, can be identified given an observed variable VV that affects the treatment or selection probability in certain ways and is conditionally independent of the error terms in a model of potential outcomes. Selection model estimators based on this identification are provided, which take the form of simple weighted averages, GMM, or two stage least squares. These estimators permit endogenous and mismeasured regressors. Empirical applications are provided to estimation of a firm investment model and a schooling effects on wages model.  相似文献   

8.
We show how the dynamic logit model for binary panel data may be approximated by a quadratic exponential model. Under the approximating model, simple sufficient statistics exist for the subject-specific parameters introduced to capture the unobserved heterogeneity between subjects. The latter must be distinguished from the state dependence which is accounted for by including the lagged response variable among the regressors. By conditioning on the sufficient statistics, we derive a pseudo conditional likelihood estimator of the structural parameters of the dynamic logit model, which is simple to compute. Asymptotic properties of this estimator are studied in detail. Simulation results show that the estimator is competitive in terms of efficiency with estimators recently proposed in the econometric literature.  相似文献   

9.
    
Binary response index models may be affected by several forms of misspecification, which range from pure functional form problems (e.g. incorrect specification of the link function, neglected heterogeneity, heteroskedasticity) to various types of sampling issues (e.g. covariate measurement error, response misclassification, endogenous stratification, missing data). In this article we examine the ability of several versions of the RESET test to detect such misspecifications in an extensive Monte Carlo simulation study. We find that: (i) the best variants of the RESET test are clearly those based on one or two fitted powers of the response index; and (ii) the loss of power resulting from using the RESET instead of a test directed against a specific type of misspecification is very small in many cases.  相似文献   

10.
We discuss how to test the specification of an ordered discrete choice model against a general alternative. Two main approaches can be followed: tests based on moment conditions and tests based on comparisons between parametric and nonparametric estimations. Following these approaches, various statistics are proposed and their asymptotic properties are discussed. The performance of the statistics is compared by means of simulations. An easy-to-compute variant of the standard moment-based statistic yields the best results in models with a single explanatory variable. In models with various explanatory variables the results are less conclusive, since the relative performance of the statistics depends on both the fit of the model and the type of misspecification that is considered.  相似文献   

11.
We characterize the robustness of subsampling procedures by deriving a formula for the breakdown point of subsampling quantiles. This breakdown point can be very low for moderate subsampling block sizes, which implies the fragility of subsampling procedures, even when they are applied to robust statistics. This instability arises also for data driven block size selection procedures minimizing the minimum confidence interval volatility index, but can be mitigated if a more robust calibration method can be applied instead. To overcome these robustness problems, we introduce a consistent robust subsampling procedure for M-estimators and derive explicit subsampling quantile breakdown point characterizations for MM-estimators in the linear regression model. Monte Carlo simulations in two settings where the bootstrap fails show the accuracy and robustness of the robust subsampling relative to the subsampling.  相似文献   

12.
This paper deals with a nonlinear errors-in-variables model where the distributions of the unobserved predictor variables and of the measurement errors are nonparametric. Using the instrumental variable approach, we propose method of moments estimators for the unknown parameters and simulation-based estimators to overcome the possible computational difficulty of minimizing an objective function which involves multiple integrals. Both estimators are consistent and asymptotically normally distributed under fairly general regularity conditions. Moreover, root-n consistent semiparametric estimators and a rank condition for model identifiability are derived using the combined methods of the nonparametric technique and Fourier deconvolution.  相似文献   

13.
In the presence of heteroskedastic disturbances, the MLE for the SAR models without taking into account the heteroskedasticity is generally inconsistent. The 2SLS estimates can have large variances and biases for cases where regressors do not have strong effects. In contrast, GMM estimators obtained from certain moment conditions can be robust. Asymptotically valid inferences can be drawn with consistently estimated covariance matrices. Efficiency can be improved by constructing the optimal weighted estimation.  相似文献   

14.
    
This paper determines coverage probability errors of both delta method and parametric bootstrap confidence intervals (CIs) for the covariance parameters of stationary long-memory Gaussian time series. CIs for the long-memory parameter d0d0 are included. The results establish that the bootstrap provides higher-order improvements over the delta method. Analogous results are given for tests. The CIs and tests are based on one or other of two approximate maximum likelihood estimators. The first estimator solves the first-order conditions with respect to the covariance parameters of a “plug-in” log-likelihood function that has the unknown mean replaced by the sample mean. The second estimator does likewise for a plug-in Whittle log-likelihood.  相似文献   

15.
GMM estimators have poor finite sample properties in highly overidentified models. With many moment conditions the optimal weighting matrix is poorly estimated. We suggest using principal components of the weighting matrix. This effectively drops some of the moment conditions. Our simulations, done in the context of the dynamic panel data model, show that the resulting GMM estimator has better finite sample properties than the usual two-step GMM estimator, in the sense of smaller bias and more reliable standard errors.  相似文献   

16.
We derive indirect estimators of conditionally heteroskedastic factor models in which the volatilities of common and idiosyncratic factors depend on their past unobserved values by calibrating the score of a Kalman-filter approximation with inequality constraints on the auxiliary model parameters. We also propose alternative indirect estimators for large-scale models, and explain how to apply our procedures to many other dynamic latent variable models. We analyse the small sample behaviour of our indirect estimators and several likelihood-based procedures through an extensive Monte Carlo experiment with empirically realistic designs. Finally, we apply our procedures to weekly returns on the Dow 30 stocks.  相似文献   

17.
18.
We consider European options on a price process that follows the log-linear stochastic volatility model. Two stochastic integrals in the option pricing formula are costly to compute. We derive a central limit theorem to approximate them. At parameter settings appropriate to foreign exchange data our formulas improve computation speed by a factor of 1000 over brute force Monte Carlo making MCMC statistical methods practicable. We provide estimates of model parameters from daily data on the Swiss Franc to Euro and Japanese Yen to Euro over the period 1999–2002.  相似文献   

19.
    
This paper presents a convenient shortcut method for implementing the Heckman estimator of the dynamic random effects probit model and other dynamic nonlinear panel data models using standard software. It then compares the estimators proposed by Heckman, Orme and Wooldridge, based on three alternative approximations, first in an empirical model for the probability of unemployment and then in a set of simulation experiments. The results indicate that none of the three estimators dominates the other two in all cases. In most cases, all three estimators display satisfactory performance, except when the number of time periods is very small.  相似文献   

20.
The minimum discrimination information principle is used to identify an appropriate parametric family of probability distributions and the corresponding maximum likelihood estimators for binary response models. Estimators in the family subsume the conventional logit model and form the basis for a set of parametric estimation alternatives with the usual asymptotic properties. Sampling experiments are used to assess finite sample performance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号