首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到13条相似文献,搜索用时 15 毫秒
1.
Abstract

We consider the valuation of credit default swaps (CDSs) under an extended version of Merton’s structural model for a firm’s corporate liabilities. In particular, the interest rate process of a money market account, the appreciation rate, and the volatility of the firm’s value have switching dynamics governed by a finite-state Markov chain in continuous time. The states of the Markov chain are deemed to represent the states of an economy. The shift from one economic state to another may be attributed to certain factors that affect the profits or earnings of a firm; examples of such factors include changes in business conditions, corporate decisions, company operations, management strategies, macroeconomic conditions, and business cycles. In this article, the Esscher transform, which is a well-known tool in actuarial science, is employed to determine an equivalent martingale measure for the valuation problem in the incomplete market setting. Systems of coupled partial differential equations (PDEs) satisfied by the real-world and risk-neutral default probabilities are derived. The consequences for the swap rate of a CDS brought about by the regimeswitching effect of the firm’s value are investigated via a numerical example for the case of a two-state Markov chain. We perform sensitivity analyses for the real-world default probability and the swap rate when different model parameters vary. We also investigate the accuracy and efficiency of the PDE approach by comparing the numerical results from the PDE approach to those from the Monte Carlo simulation.  相似文献   

2.
Abstract

We consider an optimal dynamic control problem for an insurance company with opportunities of proportional reinsurance and investment. The company can purchase proportional reinsurance to reduce its risk level and invest its surplus in a financial market that has a Black-Scholes risky asset and a risk-free asset. When investing in the risk-free asset, three practical borrowing constraints are studied individually: (B1) the borrowing rate is higher than lending (saving) rate, (B2) the dollar amount borrowed is no more than K > 0, and (B3) the proportion of the borrowed amount to the surplus level is no more than k > 0. Under each of the constraints, the objective is to minimize the probability of ruin. Classical stochastic control theory is applied to solve the problem. Specifically, the minimal ruin probability functions are obtained in closed form by solving Hamilton-Jacobi-Bellman (HJB) equations, and their associated optimal reinsurance-investment policies are found by verification techniques.  相似文献   

3.
4.
5.
6.
7.
8.
9.
10.
11.
12.
13.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号