首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Abstract

I study the problem of how individuals should invest their wealth in a risky financial market to minimize the probability that they outlive their wealth, also known as the probability of lifetime ruin. Specifically, I determine the optimal investment strategy of an individual who targets a given rate of consumption and seeks to minimize the probability of lifetime ruin. Two forms of the consumption function are considered: (1) The individual consumes at a constant (real) dollar rate, and (2) the individual consumes a constant proportion of his or her wealth. The first is arguably more realistic, but the second has a close connection with optimal consumption in Merton’s model of optimal consumption and investment under power utility.

For constant force of mortality, I determine (a) the probability that individuals outlive their wealth if they follow the optimal investment strategy; (b) the corresponding optimal investment rule that tells individuals how much money to invest in the risky asset for a given wealth level; (c) comparative statics for the functions in (a) and (b); (d) the distribution of the time of lifetime ruin, given that ruin occurs; and (e) the distribution of bequest, given that ruin does not occur. I also include numerical examples to illustrate how the formulas developed in this paper might be applied.  相似文献   

2.
Abstract

We determine the optimal investment strategy in a financial market for an individual whose random consumption is correlated with the price of a risky asset. Bayraktar and Young consider this problem and show that the minimum probability of lifetime ruin is the unique convex, smooth solution of its corresponding Hamilton-Jacobi-Bellman equation. In this paper we focus on determining the probability of lifetime ruin and the corresponding optimal investment strategy. We obtain approximations for the probability of lifetime ruin for small values of certain parameters and demonstrate numerically that they are reasonable ones. We also obtain numerical results in cases for which those parameters are not small.  相似文献   

3.
Abstract

We extend the work of Browne (1995) and Schmidli (2001), in which they minimize the probability of ruin of an insurer facing a claim process modeled by a Brownian motion with drift. We consider two controls to minimize the probability of ruin: (1) investing in a risky asset and (2) purchasing quota-share reinsurance. We obtain an analytic expression for the minimum probability of ruin and the corresponding optimal controls, and we demonstrate our results with numerical examples.  相似文献   

4.
Abstract

We assume that an agent’s rate of consumption is ratcheted; that is, it forms a nondecreasing process. We assume that the agent invests in a financial market with one riskless and one risky asset, with the latter’s price following geometric Brownian motion as in the Black-Scholes model. Given the rate of consumption, we act as financial advisers and find the optimal investment strategy for the agent who wishes to minimize his probability of ruin. To solve this minimization problem, we use techniques from stochastic optimal control.  相似文献   

5.
Abstract

We find the minimum probability of lifetime ruin of an investor who can invest in a market with a risky and a riskless asset and who can purchase a deferred life annuity. Although we let the admissible set of strategies of annuity purchasing process be the set of increasing adapted processes, we find that the individual will not buy a deferred life annuity unless she can cover all her consumption via the annuity and have enough wealth left over to sustain her until the end of the deferral period.  相似文献   

6.
This paper shows how survival-contingent investment-linked payouts can enhance investor wellbeing in the context of a portfolio choice model which integrates uninsurable labor income and asymmetric mortality expectations. In exchange for illiquidity, these products provide the consumer with access to mutual-fund style portfolio choice, as well as the survival credit generated from pooling mortality risk. Our model generates optimal asset location patterns indicating how much to hold in liquid versus illiquid survival-contingent payouts over the lifetime, and also asset allocation paths, showing how to invest in stocks versus bonds. We show that the investor who moves her money out of liquid saving into survival-contingent assets gradually from middle age to retirement and beyond, will enhance her welfare by as much as 50%. The results are robust to the introduction of uninsurable consumption shocks in housing expenses, income flows during the worklife and retirement, sudden changes in health status, and medical expenses.  相似文献   

7.
Abstract

We consider an optimal dynamic control problem for an insurance company with opportunities of proportional reinsurance and investment. The company can purchase proportional reinsurance to reduce its risk level and invest its surplus in a financial market that has a Black-Scholes risky asset and a risk-free asset. When investing in the risk-free asset, three practical borrowing constraints are studied individually: (B1) the borrowing rate is higher than lending (saving) rate, (B2) the dollar amount borrowed is no more than K > 0, and (B3) the proportion of the borrowed amount to the surplus level is no more than k > 0. Under each of the constraints, the objective is to minimize the probability of ruin. Classical stochastic control theory is applied to solve the problem. Specifically, the minimal ruin probability functions are obtained in closed form by solving Hamilton-Jacobi-Bellman (HJB) equations, and their associated optimal reinsurance-investment policies are found by verification techniques.  相似文献   

8.
In this article, we examine liquidation strategies and asset allocation decisions for property and casualty insurance companies for different insurance product lines. We propose a cash‐flow‐based liquidation model of an insurance company and analyze selling strategies for a portfolio with liquid and illiquid assets. Within this framework, we study the influence of different bid‐ask spread models on the minimum capital requirement and determine a solution set consisting of an optimal initial asset allocation and an optimal liquidation strategy. We show that the initial asset allocation, in conjunction with the appropriate liquidation strategy, is an important tool in minimizing the capital committed to cover claims for a predetermined ruin probability. This interdependence is of importance to insurance companies, stakeholders, and regulators.  相似文献   

9.
We consider an insurance company whose surplus is represented by the classical Cramer-Lundberg process. The company can invest its surplus in a risk-free asset and in a risky asset, governed by the Black-Scholes equation. There is a constraint that the insurance company can only invest in the risky asset at a limited leveraging level; more precisely, when purchasing, the ratio of the investment amount in the risky asset to the surplus level is no more than a; and when short-selling, the proportion of the proceeds from the short-selling to the surplus level is no more than b. The objective is to find an optimal investment policy that minimizes the probability of ruin. The minimal ruin probability as a function of the initial surplus is characterized by a classical solution to the corresponding Hamilton-Jacobi-Bellman (HJB) equation. We study the optimal control policy and its properties. The interrelation between the parameters of the model plays a crucial role in the qualitative behavior of the optimal policy. For example, for some ratios between a and b, quite unusual and at first ostensibly counterintuitive policies may appear, like short-selling a stock with a higher rate of return to earn lower interest, or borrowing at a higher rate to invest in a stock with lower rate of return. This is in sharp contrast with the unrestricted case, first studied in Hipp and Plum, or with the case of no short-selling and no borrowing studied in Azcue and Muler.  相似文献   

10.

We consider dynamic proportional reinsurance strategies and derive the optimal strategies in a diffusion setup and a classical risk model. Optimal is meant in the sense of minimizing the ruin probability. Two basic examples are discussed.  相似文献   

11.
Abstract

In this paper asset and liability values are modeled by geometric Brownian motions. In the first part of the paper we consider a pension plan sponsor with the funding objective that the pension asset value is to be within a band that is proportional to the pension liability value. Whenever the asset value is about to fall below the lower barrier or boundary of the band, the sponsor will provide sufficient funds to prevent this from happening. If, on the other hand, the asset value is about to exceed the upper barrier of the band, the assets are reduced by the potential overflow and returned to the sponsor. This paper calculates the expected present value of the payments to be made by the sponsor as well as that of the refunds to the sponsor. In particular we are interested in situations where these two expected values are equal. In the second part of the paper the refunds at the upper barrier are interpreted as the dividends paid to the shareholders of a company according to a barrier strategy. However, if the (modified) asset value ever falls to the liability value, which is the lower barrier, “ruin” takes place, and no more dividends can be paid. We derive an explicit expression for the expected discounted dividends before ruin. From this we find an explicit expression for the proportionality constant of the upper barrier that maximizes the expected discounted dividends. If the initial asset value is the optimal upper barrier, there is a particularly simple and intriguing expression for the expected discounted dividends, which can be interpreted as the present value of a deterministic perpetuity with exponentially growing payments.  相似文献   

12.
Optimal asset allocation under linear loss aversion   总被引:2,自引:0,他引:2  
We study the asset allocation of a linear loss-averse (LA) investor and compare it to the more traditional mean-variance (MV) and conditional value-at-risk (CVaR) investors. First we derive conditions under which the LA problem is equivalent to the MV and CVaR problems and solve analytically the two-asset problem of the LA investor for a risk-free and a risky asset. Then we run simulation experiments to study properties of the optimal LA and MV portfolios under more realistic assumptions. We find that under asymmetric dependence LA portfolios outperform MV portfolios, provided investors are sufficiently loss-averse and dependence is large. Finally, using 13 EU and US assets, we implement the trading strategy of a linear LA investor who reallocates his/her portfolio on a monthly basis. We find that LA portfolios clearly outperform MV and CVaR portfolios and that incorporating a dynamic update of the LA parameters significantly improves the performance of LA portfolios.  相似文献   

13.
ABSTRACT

We discuss an optimal excess-of-loss reinsurance contract in a continuous-time principal-agent framework where the surplus of the insurer (agent/he) is described by a classical Cramér-Lundberg (C-L) model. In addition to reinsurance, the insurer and the reinsurer (principal/she) are both allowed to invest their surpluses into a financial market containing one risk-free asset (e.g. a short-rate account) and one risky asset (e.g. a market index). In this paper, the insurer and the reinsurer are ambiguity averse and have specific modeling risk aversion preferences for the insurance claims (this relates to the jump term in the stochastic models) and the financial market's risk (this encompasses the models' diffusion term). The reinsurer designs a reinsurance contract that maximizes the exponential utility of her terminal wealth under a worst-case scenario which depends on the retention level of the insurer. By employing the dynamic programming approach, we derive the optimal robust reinsurance contract, and the value functions for the reinsurer and the insurer under this contract. In order to provide a more explicit reinsurance contract and to facilitate our quantitative analysis, we discuss the case when the claims follow an exponential distribution; it is then possible to show explicitly the impact of ambiguity aversion on the optimal reinsurance.  相似文献   

14.
《Finance Research Letters》2014,11(4):429-436
We study optimal investment decisions for long-horizon investors with industry-specific labor income risks. We find that in addition to the volatility of labor income growth, the correlation between labor income and risky asset returns is another important factor that affects the optimal portfolio decisions and may provide a plausible explanation for the mixed empirical evidence of the relationship between labor income risk and portfolio holdings. Depending on its relative covariance with stock and bond returns, labor income may help resolve or deepen the asset allocation puzzle.  相似文献   

15.
Abstract

1. The determination of the probability that an insurance company once in the future will be brought to ruin is a problem of great interest in insurance mathematics. If we know this probability, it does not only give us a possibility to estimate the stability of the insurance company, but we may also decide which precautions, in the form of f. ex. reinsurance and loading of the premiums, should be taken in order to make the probability of ruin so small that in practice no ruin is to be feared.  相似文献   

16.
A certain volume of risks is insured and there is a reinsurance contract, according to which claims and total premium income are shared between a direct insurer and a reinsurer in such a way, that the finite horizon probability of their joint survival is maximized. An explicit expression for the latter probability, under an excess of loss (XL) treaty is derived, using the improved version of the Ignatov and Kaishev's ruin probability formula (see Ignatov, Kaishev & Krachunov. 2001a) and assuming, Poisson claim arrivals, any discrete joint distribution of the claims, and any increasing real premium income function. An explicit expression for the probability of survival of the cedent only, under an XL contract is also derived and used to determine the probability of survival of the reinsurer, given survival of the cedent. The absolute value of the difference between the probability of survival of the cedent and the probability of survival of the reinsurer, given survival of the cedent is used for the choice of optimal retention level. We derive formulae for the expected profit of the cedent and of the reinsurer, given their joint survival up to the finite time horizon. We illustrate how optimal retention levels can be set, using an optimality criterion based on the expected profit formulae. The quota share contract is also considered under the same model. It is shown that the probability of joint survival of the cedent and the reinsurer coincides with the probability of survival of solely the insurer. Extensive, numerical comparisons, illustrating the performance of the proposed reinsurance optimality criteria are presented.  相似文献   

17.
We consider a risk process with the possibility of investment into a risky asset. The aim of the paper is to obtain the asymptotic behaviour of the ruin probability under the optimal investment strategy in the small claims case. In addition we prove convergence of the optimal investment level as the initial capital tends to infinity.  相似文献   

18.
Abstract

We consider a compound Poisson risk model in which part of the premium is paid to the shareholders as dividends when the surplus exceeds a specified threshold level. In this model we are interested in computing the moments of the total discounted dividends paid until ruin occurs. However, instead of employing the traditional argument, which involves conditioning on the time and amount of the first claim, we provide an alternative probabilistic approach that makes use of the (defective) joint probability density function of the time of ruin and the deficit at ruin in a classical model without a threshold. We arrive at a general formula that allows us to evaluate the moments of the total discounted dividends recursively in terms of the lower-order moments. Assuming the claim size distribution is exponential or, more generally, a finite shape and scale mixture of Erlangs, we are able to solve for all necessary components in the general recursive formula. In addition to determining the optimal threshold level to maximize the expected value of discounted dividends, we also consider finding the optimal threshold level that minimizes the coefficient of variation of discounted dividends. We present several numerical examples that illustrate the effects of the choice of optimality criterion on quantities such as the ruin probability.  相似文献   

19.
Abstract

If one assumes that the surplus of an insurer follows a jump-diffusion process and the insurer would invest its surplus in a risky asset, whose prices are modeled by a geometric Brownian motion, the resulting surplus for the insurer is called a jump-diffusion surplus process compounded by a geometric Brownian motion. In this resulting surplus process, ruin may be caused by a claim or oscillation. We decompose the ruin probability in the resulting surplus process into the sum of two ruin probabilities: the probability that ruin is caused by a claim, and the probability that ruin is caused by oscillation. Integro-differential equations for these ruin probabilities are derived. When claim sizes are exponentially distributed, asymptotical formulas of the ruin probabilities are derived from the integro-differential equations, and it is shown that all three ruin probabilities are asymptotical power functions with the same orders and that the orders of the power functions are determined by the drift and volatility parameters of the geometric Brownian motion. It is known that the ruin probability for a jump-diffusion surplus process is an asymptotical exponential function when claim sizes are exponentially distributed. The results of this paper further confirm that risky investments for an insurer are dangerous in the sense that either ruin is certain or the ruin probabilities are asymptotical power functions, not asymptotical exponential functions, when claim sizes are exponentially distributed.  相似文献   

20.
Members of defined contribution (DC) pension plans must take on additional responsibilities for their investments, compared to participants in defined benefit (DB) pension plans. The transition from DB to DC plans means that more employees are faced with these responsibilities. We explore the extent to which DC plan members can follow financial strategies that have a high chance of resulting in a retirement scenario that is fairly close to that provided by DB plans. Retirees in DC plans typically must fund spending from accumulated savings. This leads to the risk of depleting these savings, that is, portfolio depletion risk. We analyze the management of this risk through life cycle optimal dynamic asset allocation, including the accumulation and decumulation phases. We pose the asset allocation strategy as an optimal stochastic control problem. Several objective functions are tested and compared. We focus on the risk of portfolio depletion at the terminal date, using such measures as conditional value at risk (CVAR) and probability of ruin. A secondary consideration is the median terminal portfolio value. The control problem is solved using a Hamilton-Jacobi-Bellman formulation, based on a parametric model of the financial market. Monte Carlo simulations that use the optimal controls are presented to evaluate the performance metrics. These simulations are based on both the parametric model and bootstrap resampling of 91 years of historical data. The resampling tests suggest that target-based approaches that seek to establish a safety margin of wealth at the end of the decumulation period appear to be superior to strategies that directly attempt to minimize risk measures such as the probability of portfolio depletion or CVAR. The target-based approaches result in a reasonably close approximation to the retirement spending available in a DB plan. There is a small risk of depleting the retiree’s funds, but there is also a good chance of accumulating a buffer that can be used to manage unplanned longevity risk or left as a bequest.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号