首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The effect of rain events on effluent quality dynamics was studied at a full scale activated sludge wastewater treatment plant which has a process solution incorporating pre-denitrification in activated sludge with post-nitrification in trickling filters. The incoming wastewater flow varies significantly due to a combined sewer system. Changed flow conditions have an impact on the whole treatment process since the recirculation to the trickling filters is set by the hydraulic limitations of the secondary settlers. Apart from causing different hydraulic conditions in the plant, increased flow due to rain or snow-melting, changes the properties of the incoming wastewater which affects process performance and effluent quality, especially the particle removal efficiency. A comprehensive set of on-line and laboratory data were collected and analysed to assess the impact of rain events on the plant performance.  相似文献   

2.
A two-stage thermophilic-mesophilic anaerobic digestion pilot-plant was operated solely on waste activated sludge (WAS) from a biological nutrient removal (BNR) plant. The first-stage thermophilic reactor (HRT 2 days) was operated at 47, 54 and 60 degrees C. The second-stage mesophilic digester (HRT 15 days) was held at a constant temperature of 36-37 degrees C. For comparison with a single-stage mesophilic process, the mesophilic digester was also operated separately with an HRT of 17 days and temperature of 36-37 degrees C. The results showed a truly thermophilic stage (60 degrees C) was essential to achieve good WAS degradation. The lower thermophilic temperatures examined did not offer advantages over single-stage mesophilic treatment in terms of COD and VS removal. At a thermophilic temperature of 60 degrees C, the plant achieved 35% VS reduction, representing a 46% increase compared to the single-stage mesophilic digester. This is a significant level of degradation which could make such a process viable in situations where there is no primary sludge generated. The fate of the biologically stored phosphorus in this BNR sludge was also investigated. Over 80% of the incoming phosphorus remained bound up with the solids and was not released into solution during the WAS digestion. Therefore only a small fraction of phosphorus would be recycled to the main treatment plant with the dewatering stream.  相似文献   

3.
多级高浓度活性污泥法在不征地、不增加处理构筑物的情况下,以提高活性污泥浓度为指导思想,对现有城市污水处理厂进行升级改造,达到脱氮除磷的目的。中试研究表明,在试验条件下,出水CODCr为33~43mg/L,去除率92%左右;NH3-N为3~5mg/L,去除率90%左右;TP为1~1.7mg/L,去除率72%左右。系统保证了良好的脱氮除磷效果。  相似文献   

4.
The possible symbiosis between bacteria and anaerobic archaea was investigated in intermittent aeration (I/A) systems. Archaea solution added to I/A reactor might play an important role in biological activities as well as in improvement of mineralization of organic matter. I/A reactor with archaea solution (I/A-arch) could increase both nitrification and denitrification rate and also reduce the sludge yield remarkably. These results indicate the possibility of the symbiotic activated sludge system with anaerobic archaea by controlling the DO level in the aeration tank. In this study, DO was controlled by intermittent aeration schemes and a successful symbiotic activated sludge system was achieved to reach the following conclusions. 1) SOUR of I/A-arch system was 2.9 mg-O2/g-VSS x min. SOUR and nitrification rate of the sludge from I/A-arch was higher than those from the I/A and A/S reactors. 2) Removal efficiencies of organic matter (TCOD(Cr)) in I/A-arch, I/A and conventional activated sludge (A/S) reactors were 93, 90 and 87%, respectively. 3) Nitrification occurred successfully in each reactor, while denitrification rate was much higher in the I/A-arch reactor. Efficiencies of TN removal in A/I-arch, I/A and A/S reactors were 75, 63 and 33%, respectively. 4) Observed yield coefficients of I/A-arch, I/A and A/S reactors were 0.28, 0.41 and 0.37 g-VSS/g-COD.  相似文献   

5.
Secondary settling dynamics at maximal capacity were investigated at a full scale wastewater treatment plant which utilizes a unique process solution incorporating pre-denitrification with post-nitrification in nitrifying trickling filters. Since nitrogen removal is greater when more secondary effluent is recirculated to the trickling filters, the secondary settlers generally operate at close to their maximal capacity. The settling and flocculation properties of the activated sludge are therefore a major capacity-determining factor for plant operation. Due to the short sludge age, the flocculation properties, with respect to both thickening and clarification, can change quickly. The dynamics in these changes were studied and the factors that determine the maximal settling capacity were assessed. Solids flux curves were constructed from batch settling tests and compared with the actual maximal settling capacities.  相似文献   

6.
A four stage pilot plant of step-feed biological nutrient removal (BNR) was employed to investigate reactor performance and process stability. The results obtained showed that step-feed BNR is efficient and cost-effective for nitrogen and carbonaceous removal from municipal wastewater. The total average removal efficiencies of COD, NH3-N, TN and TP could reach as high as 89.5, 97.8, 73 and 75%, respectively, with 50% of return activated sludge (RAS), 9 h of hydraulic retention time (HRT) and 20 d of sludge retention time (SRT). Step-feed BNR is an alternative and effective technology of nutrient removal for municipal wastewater treatment.  相似文献   

7.
In activated sludge (AS) biotreatment, septic compounds such as volatile organic acids and reduced sulphur compounds have been frequently cited as a major cause of Thiothrix and Type 021N filamentous bulking. These filaments are common in Canadian pulp and paper biotreatment systems, where they cause settling problems in secondary clarifiers. We conducted a 14-week study of a TMP/newsprint mill effluent to characterize the septic compounds entering the biotreatment, and to determine correlations with AS biomass characteristics and biotreatment operating parameters. A significant correlation was found between the sludge volume index, the abundance of Type 021N, and the propionic acid (PA) concentration in the primary clarified effluent. PA also induced a significant change in the flocculating bacteria size distribution determined by digital imaging. Consequently, the correlation observed between PA and Type 021N bulking is an indirect effect of inhibition of floc-forming microorganisms, giving a competitive advantage to filaments.  相似文献   

8.
The feasibility of an autotrophic denitrification process in an activated sludge reactor, using sulphide as the electron donor, was tested for simultaneous denitrification and sulphide removal. The reactor was operated at nitrate (N) to sulphide (S) ratios between 0.5 and 0.9 to evaluate their effect on the N-removal efficiency, the S-removal efficiency and the product formation during anoxic oxidation of sulphide. One hundred per cent removal of both nitrate and sulphide was achieved at a NLR of 7.96 mmol N-L(-1) x d(-1) (111.44 mg NO3- -N x L(-1) x d(-1)) and at a N/S ratio of 0.89 with complete oxidation of sulphide to sulphate. The oxygen level in the reactor (10%) was found to influence the N-removal efficiency by inhibiting the denitrification process. Moreover, chemical (or biological) oxidation of sulphide with oxygen occurred, resulting in a loss of the electron donor. FISH analysis was carried out to study the microbial population in the system.  相似文献   

9.
The sludge from six SBRs treating dairy effluent and located at same geographical location, in North East of France, were collected to study their characteristic behavior. The six plants were designed and constructed by the same manufacturer and are working under quite similar operating conditions. The objective of the study was to observe if any similarity existed in the characteristics of the sludge collected from the SBRs. The sludge was characterized for morphological properties (filament index, floc size), settling, compressibility, suspended solids (SS) concentration. The sludge from each plant was different from the others in most of the characteristics. One sludge out of six (sludge G) was completely different from the others with a very degraded structure and low discrete settling and compression. This reactor was not working fully satisfactorily with a too high COD at outlet, probably because this SBR was undergoing repetitive overloading linked to a very bad recovery of the whey by the cheese maker. The five other SBRs were working fully satisfactorily but the characteristics of the five sludges were quite different from one sludge to another. The size of the flocs seemed to be the only parameter measured which could be correlated to the settling characteristics of the sludge. The sludge characteristics and the parameter correlations were also compared with that of municipal activated sludge and were found to be very different.  相似文献   

10.
Three operating strategies were tested for decreasing activated sludge deflocculation due to temperature shifts from 30 degrees to 45 degrees C: magnesium sludge enrichment, increased sludge retention time (33 d), and spikes of an easily degradable substrate (methanol). The temperature shifts were conducted sequentially in 4 parallel lab-scale sequencing batch reactors (SBRs) treating kraft pulp mill effluent. Three SBRs operated at an SRT = 20 days, and in one of them the sludge was not manipulated, thus, serving as a reference SBR. The temperature shift was associated with decreased soluble chemical oxygen demand (SCOD) removals, decreased sludge settleability and substrate removal capacity, and increased effluent suspended solids (ESS) and turbidity levels. The shift also increased the sludge specific respiration rates and reduced the sludge substrate removal capacity. Sludge deflocculation was assessed as floc solubilisation (increased effluent SCOD levels) and floc fragmentation (increase in effluent solids smaller than 50 microm). Mg enrichment of the sludge and methanol spikes reduced the ESS levels (in 9 and 25%), and the three operating strategies decreased effluent turbidity (in 22-35%) compared to the maximum levels from the non-manipulated reactor (44 mg ESS/L). The stronger sludge floc structure achieved by magnesium enrichment and a high sludge age of 33 days was unsuccessful in significantly decreasing deflocculation. The mechanisms involved in sludge deflocculation require further fundamental research.  相似文献   

11.
Highsludge高浓度活性污泥工艺采用兼氧-好氧组合流程,最显著的特点是活性污泥浓度高和好氧段溶解氧低.对该工艺处理碳源不足的城市污水进行了中试研究,结果表明:High-sludge高浓度活性污泥工艺可以在进水碳源不足的条件下,保证很好的TN去除效果,在进水TN不高于59.2 mg/L的条件下,出水TN低于15 mg/L,满足<城镇污水处理厂污染物排放标准>(GB18918-2002)一级A标准.试验分析了TN去除情况与各工艺运行参数的相关关系,发现MLSS和DO是控制出水TN最关键的参数.同时试验发现,高浓度活性污泥条件下,普通沉淀池可以正常运行,剩余污泥产量较少但会产生较多的生物泡沫.  相似文献   

12.
The hydraulic characteristics of aeration tanks in WWTPs have a major impact on the degradation of pollutants, as well as on the control of the aeration. In particular in long reactors, which are not separated by baffles, hydraulic shortcuts or large scale recirculation can lead to a loss of performance. This work demonstrates that reactive tracers such as ammonium and oxygen can be used to investigate the hydraulics of aeration tanks in detail. With the use of electrochemical sensors it is possible to investigate effects in a broad range of time scales.In the present case study a slow oscillation of the aeration control loop was investigated. Large scale recirculation in the aeration tank and fast fluctuations of the ammonium concentrations close to the oxygen sensor were identified as the cause of these oscillations. Both, the recirculation as well as the fluctuation of the ammonium have a substantial influence on the performance of the aeration tank and the aeration control loop.  相似文献   

13.
Activated sludge from a new activated sludge modification for biological phosphorus and nitrogen removal was studied. Population dynamics and the phenomenon of anoxic phosphate uptake with simultaneous denitrification were investigated.The ability of the process to remove nutrients and to suppress filamentous bulking was studied. The course of phosphate concentrations along the tested system showed an anoxic phosphate uptake with simultaneous denitrification. The mechanism of anoxic phosphate uptake was confirmed using kinetic batch tests. © 1998 IAWQ. Published by Elsevier Science Ltd  相似文献   

14.
An investigation comprising four studies was undertaken to determine possible factors affecting the growth of several different types of filamentous microorganisms present in a bulking industrial wastewater activated sludge. Results from laboratory-scale continuous-flow and full-scale studies suggested that DO concentration and F:M ratio were the likely key factors affecting filamentous growth in the activated sludge. From the results of two laboratory studies isolating the effects of DO concentration and F:M ratio on filamentous growth, favorable growth ranges of DO concentration or F:M ratio were estimated for the following filaments: Microthrix parvicella, Nocardia spp., Nostocoida limicola II, and Types 0041, 1851, and 1863. Most of the bacteria causing filamentous bulking of the activated sludge were found to be filaments typically associated with low F:M, and increasing the F:M ratio appeared to cause N. limicola II to lose its competitive advantage in the activated sludge system. Type 1863, on the other hand, was found to be a low DO filament, as DO concentrations of 0.1 mg O2/l or less appeared to be a necessary condition for its filamentous growth. Though Nocardia was found to be a low F:M filament, its growth also seemed to be affected by DO concentration, as its growth was stimulated by concentrations of 1.0 mg O2/l or greater, with a near linear relationship up to at least 5 mg O2/l.  相似文献   

15.
Potential of activated sludge ozonation.   总被引:2,自引:0,他引:2  
The disposal of sewage sludge and the agricultural use of stabilised sludge are decreasing due to more stringent regulations in Europe. An increasing fraction of sewage sludge must therefore be dewatered, dried, incinerated and the ashes disposed of in landfills. These processes are cost-intensive and also lead to the loss of the valuable phosphate resources incorporated in the sludge ash. The implementation of processes that could reduce excess sludge production and recycle phosphate is therefore recommended. Partial ozonation of the return sludge of an activated sludge system significantly reduces excess sludge production, improves the settling properties of the sludge and reduces bulking and scumming. The solubilised COD will also improve denitrification if the treated sludge is recycled to the anoxic zone. However, ozonation partly kills nitrifiers and could therefore lead to a decrease of the effective solid retention time of the nitrifier, thus reducing the safety of the nitrification. This paper discusses the effect of ozonation on sludge reduction, the operating stability of nitrification, the improvement of denitrification and also presents an energy and cost evaluation.  相似文献   

16.
The disposal of sewage sludge and the agricultural use of stabilised sludge are decreasing due to more stringent regulations in Europe. An increasing fraction of sewage sludge must therefore be dewatered, dried, incinerated and the ashes disposed of in landfills. These processes are cost-intensive and also lead to the loss of valuable phosphate resources incorporated in the sludge ash. The implementation of processes that could reduce excess sludge production and recycle phosphate is therefore recommended. Disintegration of biological sludge by mechanical, thermal and physical methods could significantly reduce excess sludge production, improve the settling properties of the sludge and reduce bulking and scumming. The solubilised COD could also improve denitrification if the treated sludge is recycled to the anoxic zone. However, disintegration partly inhibits and kills nitrifiers and could therefore shorten their effective solid retention time, thus reducing the safety of the nitrification. This paper discusses the potential of disintegration on sludge reduction, the operating stability of nitrification, the improvement of denitrification and also presents an energy and cost evaluation.  相似文献   

17.
The filtration characteristics of two different module configurations with coarse pore filter (non-woven fabric) were investigated for sludge floc separation in an activated sludge reactor for domestic wastewater reclamation. A polypropylene non-woven fabric filter (35 g/m2) was used for the two different module configurations, one flat and one tubular type, each with a filtration area of 0.052 m2. The different module types, submerged in the oxic compartment of A/O (anaerobic/oxic) type reactors, were operated simultaneously. The filtration fluxes were gradually increased from 0.5 to 1.2 and 1.73 m/d. The filtration pressures were more stably maintained for the tubular type module than the plate type. The tubular type module installed horizontally with two-side suction showed less filtration pressures than the tubular type module installed vertically with one-side suction. The solid separation was significantly high showing less than 5 mg/L effluent solids. The organic and T-N removal efficiencies were around 95 and 50%, respectively. The 85% removal of T-P was achieved with 20 mg/L injection of PAC (poly-aluminum chloride).  相似文献   

18.
The presence of a short circuit flow in a denitrifying activated sludge tank was identified and modelled. Tracer tests with pulse addition of lithium salt were used to investigate the hydraulics of the tank. The lithium concentration in the effluent was detected and residence time distribution (RTD) curves were generated. Hydraulic models based on completely stirred tank reactors (CSTRs) in series were generated from the RTD curves and the models were compared. The short circuit problem was successfully described using the Martin model, where the inflow is divided into two strands. Each strand was modelled as a number of CSTRs in series. At a normal flow the results of the model show that the tank has 12.8% dead volume, 85.8% main volume and 1.3% short circuiting volume. The inflow was divided into 91.9% entering the main volume and 8.1% entering the short circuiting volume. The mean velocity of the short circuiting stream was estimated to 0.4 m/s. At maximum flow the short circuiting stream was even larger and handled 24.3% of the flow. The short circuiting stream was identified in the upper part of the tank due to the position of the inlet and the outlet. The configuration of a tank including the use of baffles, the geometry of the inlet and mixer configuration should be considered carefully if short circuiting is to be avoided.  相似文献   

19.
The use of zero-valent iron for treating wastewaters containing RDX and perchlorate from an army ammunition plant (AAP) in the USA at elevated temperatures and moderately elevated temperature with chemical addition was evaluated through batch and column experiments. RDX in the wastewater was completely removed in an iron column after 6.4 minutes. Increasing the temperature to 75 degrees C decreased the required retention time to 2.1 minutes for complete RDX removal. Perchlorate in the wastewater was completely removed by iron at an elevated temperature of 150 degrees C in batch reactors in 6 hours without pH control. Significant reduction of perchlorate by zero-valent iron was also achieved at a more moderate temperature (75 degrees C) through use of a 0.2 M acetate buffer. Based on the evaluation results, we propose two innovative processes for treating RDX-containing and perchlorate-containing wastewaters: a temperature and pressure-controlled batch iron reactor and subsequent oxidation by existing industrial wastewater treatment plant; and reduction by consecutive iron columns with heating and acid addition capabilities and subsequent oxidation.  相似文献   

20.
A lab-scale Cyclic Activated Sludge Technology (CAST) system was operated more than 5 months to evaluate the effects of the operation mode on nitrogen removal performance and investigate a feasible method for achieving short-cut nitrification in the system. Results showed that nitrogen was removed by conventional biological nitrification and denitrification in traditional operation mode (fill/aeration 2 h, settle 1 h, decant 1 h), whereas short-cut nitrification and denitrification was the main nitrogen removal pathway in modified operation mode and the nitrogen removal performance was enhanced. Short-cut nitrification was successfully achieved in CAST system at 17 ± 1 °C by adjusting operation conditions and the average total nitrogen removal efficiency increased by 11.4% compared to traditional mode. It was assumed that low dissolved oxygen (<1.0 mg/L) limitation combined with free ammonia (0.28-0.34 mg/L) inhibition on nitrite-oxidizing bacteria caused nitrite accumulation in modified mode. During maintaining period of short-cut nitrification, preset aeration time enhanced ammonium-oxidizing bacteria dominance. It was also found that low DO could result in overgrowth of filamentous microorganisms and poor sludge settleability. The pH variation could provide effective information for controlling aeration duration in modified mode. However, no evident breakpoint appeared on pH and DO profiles in traditional mode.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号