首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
The general consensus in the volatility forecasting literature is that high-frequency volatility models outperform low-frequency volatility models. However, such a conclusion is reached when low-frequency volatility models are estimated from daily returns. Instead, we study this question considering daily, low-frequency volatility estimators based on open, high, low, and close daily prices. Our data sample consists of 18 stock market indices. We find that high-frequency volatility models tend to outperform low-frequency volatility models only for short-term forecasts. As the forecast horizon increases (up to one month), the difference in forecast accuracy becomes statistically indistinguishable for most market indices. To evaluate the practical implications of our results, we study a simple asset allocation problem. The results reveal that asset allocation based on high-frequency volatility model forecasts does not outperform asset allocation based on low-frequency volatility model forecasts.  相似文献   

2.
A new class of forecasting models is proposed that extends the realized GARCH class of models through the inclusion of option prices to forecast the variance of asset returns. The VIX is used to approximate option prices, resulting in a set of cross-equation restrictions on the model’s parameters. The full model is characterized by a nonlinear system of three equations containing asset returns, the realized variance, and the VIX, with estimation of the parameters based on maximum likelihood methods. The forecasting properties of the new class of forecasting models, as well as a number of special cases, are investigated and applied to forecasting the daily S&P500 index realized variance using intra-day and daily data from September 2001 to November 2017. The forecasting results provide strong support for including the realized variance and the VIX to improve variance forecasts, with linear conditional variance models performing well for short-term one-day-ahead forecasts, whereas log-linear conditional variance models tend to perform better for intermediate five-day-ahead forecasts.  相似文献   

3.
E P Kao  G G Tung 《Socio》1981,15(3):119-127
In this paper, we present an aggregate nursing requirement planning model for inpatient services to provide inputs for preparing yearly budgets in a public health care delivery system. A forecasting system using autoregressive integrated moving average time-series models forms the basis of project demands for nursing hours by medical specialities. These projections along with the institutional constraints and patient care requirements are all incorporated in a linear programming model for assessing needs for permanent staff, overtime pay and contracting temporary help—by medical service, nursing skill level and time period (month). We also expand the model to evaluate the sizing of a pool of float nurses. The model is developed within the framework of routine managerial planning process of the system under study (vis-à vis, the data base and the organizational structure). Historical data are used to estimate input parameters for the model. The staffing needs generated from the model for 1978 are compared with the actual system performance.  相似文献   

4.
This article analyzes the needs for, and capabilities of, formalized forecasting of future workloads to support more effective and efficient solid waste operations management. A case study of computerized forecasting of the average daily solid waste quantity generated, month by month, in Sacramento County, California, is presented. The monthly pattern of peaks and valleys and the month by month trend in solid waste generation are identified. Selected uses of the forecast average, pattern, and trend information in planning for solid waste services and operations are examined. The extent of future workload unpredictability, in Sacramento, in terms of randomness reflected in forecast errors, is identified. The operational consequences of forecast errors are discussed.  相似文献   

5.
Value-at-Risk (VaR) is used to analyze the market downside risk associated with investments in six key individual assets including four precious metals, oil and the S&P 500 index, and three diversified portfolios. Using combinations of these assets, three optimal portfolios and their efficient frontiers within a VaR framework are constructed and the returns and downside risks for these portfolios are also analyzed. One-day-ahead VaR forecasts are computed with nine risk models including calibrated RiskMetrics, asymmetric GARCH type models, the filtered Historical Simulation approach, methodologies from statistics of extremes and a risk management strategy involving combinations of models. These risk models are evaluated and compared based on the unconditional coverage, independence and conditional coverage criteria. The economic importance of the results is also highlighted by assessing the daily capital charges under the Basel Accord rule. The best approaches for estimating the VaR for the individual assets under study and for the three VaR-based optimal portfolios and efficient frontiers are discussed. The VaR-based performance measure ranks the most diversified optimal portfolio (Portfolio #2) as the most efficient and the pure precious metals (Portfolio #1) as the least efficient.  相似文献   

6.
Volatility forecasts are important for a number of practical financial decisions, such as those related to risk management. When working with high-frequency data from markets that operate during a reduced time, an approach to deal with the overnight return volatility is needed. In this context, we use heterogeneous autoregressions (HAR) to model the variation associated with the intraday activity, with distinct realized measures as regressors, and, to model the overnight returns, we use augmented GARCH type models. Then, we combine the HAR and GARCH models to generate forecasts for the total daily return volatility. In an empirical study, for returns on six international stock indices, we analyze the separate modeling approach in terms of its out-of-sample forecasting performance of daily volatility, Value-at-Risk and Expected Shortfall relative to standard models from the literature. In particular, the overall results are favorable for the separate modeling approach in comparison with some HAR models based on realized variance measures for the whole day and the standard GARCH model.  相似文献   

7.
We consider modeling and forecasting large realized covariance matrices by penalized vector autoregressive models. We consider Lasso‐type estimators to reduce the dimensionality and provide strong theoretical guarantees on the forecast capability of our procedure. We show that we can forecast realized covariance matrices almost as precisely as if we had known the true driving dynamics of these in advance. We next investigate the sources of these driving dynamics as well as the performance of the proposed models for forecasting the realized covariance matrices of the 30 Dow Jones stocks. We find that the dynamics are not stable as the data are aggregated from the daily to lower frequencies. Furthermore, we are able beat our benchmark by a wide margin. Finally, we investigate the economic value of our forecasts in a portfolio selection exercise and find that in certain cases an investor is willing to pay a considerable amount in order get access to our forecasts. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

8.
Past research on time-varying sales-response models emphasized the application of different estimation techniques in examining variation in advertising effectiveness over time. This study focuses on comparing sales forecasts using constant and stochastic coefficients sales-response models. Selected constant and stochastic coefficient models are applied to six sets of bimonthly and one set of annual advertising and sales data to assess forecasting accuracy for time horizons of various lengths. Results show improved forecasting accuracy for a first-order autoregressive stochastic coefficient model, particularly in short-run forecasting applications.  相似文献   

9.
Forecasting temperature to price CME temperature derivatives   总被引:1,自引:0,他引:1  
This paper seeks to forecast temperatures in US cities in order to price temperature derivatives on the Chicago Mercantile Exchange (CME). The CME defines the average daily temperature underlying its contracts as the average of the maximum and minimum daily temperatures, yet all published work on temperature forecasting for pricing purposes has ignored this peculiar definition of the average and sought to model the average temperature directly. This paper is the first to look at the average temperature forecasting problem as an analysis of extreme values. The theory of extreme values guides model selection for temperature maxima and minima, and a forecast distribution for the CME’s daily average temperature is found through convolution. While univariate time series AR-GARCH and regression models generally yield superior point forecasts of temperatures, our extreme-value-based model consistently outperforms these models in density forecasting, the most important risk management tool.  相似文献   

10.
Forecasting customer flow is key for retailers in making daily operational decisions, but small retailers often lack the resources to obtain such forecasts. Rather than forecasting stores’ total customer flows, this research utilizes emerging third-party mobile payment data to provide participating stores with a value-added service by forecasting their share of daily customer flows. These customer transactions using mobile payments can then be utilized further to derive retailers’ total customer flows indirectly, thereby overcoming the constraints that small retailers face. We propose a third-party mobile-payment-platform centered daily mobile payments forecasting solution based on an extension of the newly-developed Gradient Boosting Regression Tree (GBRT) method which can generate multi-step forecasts for many stores concurrently. Using empirical forecasting experiments with thousands of time series, we show that GBRT, together with a strategy for multi-period-ahead forecasting, provides more accurate forecasts than established benchmarks. Pooling data from the platform across stores leads to benefits relative to analyzing the data individually, thus demonstrating the value of this machine learning application.  相似文献   

11.
This study compares forecasts of US international message telephone service (IMTS) traffic using several relative mean squared error statistics. The forecasts are obtained from time-series extrapolation, univariate autoregressive integrated moving average (ARIMA), error correction and vector autoregressive models. The models are estimated on annual US IMTS outgoing traffic data for six US–Asia bilateral markets for the period 1964 to 1993. No single approach provides best forecasts. However, forecast evaluation statistics indicate that econometric models generally outperform the alternatives.  相似文献   

12.
We construct a real-time dataset (FRED-SD) with vintage data for the U.S. states that can be used to forecast both state-level and national-level variables. Our dataset includes approximately 28 variables per state, including labor-market, production, and housing variables. We conduct two sets of real-time forecasting exercises. The first forecasts state-level labor-market variables using five different models and different levels of industrially disaggregated data. The second forecasts a national-level variable exploiting the cross-section of state data. The state-forecasting experiments suggest that large models with industrially disaggregated data tend to have higher predictive ability for industrially diversified states. For national-level data, we find that forecasting and aggregating state-level data can outperform a random walk but not an autoregression. We compare these real-time data experiments with forecasting experiments using final-vintage data and find very different results. Because these final-vintage results are obtained with revised data that would not have been available at the time the forecasts would have been made, we conclude that the use of real-time data is essential for drawing proper conclusions about state-level forecasting models.  相似文献   

13.
We evaluate the performances of various methods for forecasting tourism data. The data used include 366 monthly series, 427 quarterly series and 518 annual series, all supplied to us by either tourism bodies or academics who had used them in previous tourism forecasting studies. The forecasting methods implemented in the competition are univariate and multivariate time series approaches, and econometric models. This forecasting competition differs from previous competitions in several ways: (i) we concentrate on tourism data only; (ii) we include approaches with explanatory variables; (iii) we evaluate the forecast interval coverage as well as the point forecast accuracy; (iv) we observe the effect of temporal aggregation on the forecasting accuracy; and (v) we consider the mean absolute scaled error as an alternative forecasting accuracy measure. We find that pure time series approaches provide more accurate forecasts for tourism data than models with explanatory variables. For seasonal data we implement three fully automated pure time series algorithms that generate accurate point forecasts, and two of these also produce forecast coverage probabilities which are satisfactorily close to the nominal rates. For annual data we find that Naïve forecasts are hard to beat.  相似文献   

14.
Financial data often contain information that is helpful for macroeconomic forecasting, while multi-step forecast accuracy benefits from incorporating good nowcasts of macroeconomic variables. This paper considers the usefulness of financial nowcasts for making conditional forecasts of macroeconomic variables with quarterly Bayesian vector autoregressions (BVARs). When nowcasting quarterly financial variables’ values, we find that taking the average of the available daily data and a daily random walk forecast to complete the quarter typically outperforms other nowcasting approaches. Using real-time data, we find gains in out-of-sample forecast accuracy from the inclusion of financial nowcasts relative to unconditional forecasts, with further gains from the incorporation of nowcasts of macroeconomic variables. Conditional forecasts from quarterly BVARs augmented with financial nowcasts rival the forecast accuracy of mixed-frequency dynamic factor models and mixed-data sampling (MIDAS) models.  相似文献   

15.
We provide a detailed discussion of time series modelling of daily data in general and daily tax revenues in particular. The main feature of the daily tax revenue series is the pattern within calendar months. Standard time series methods for seasonal adjustment and forecasting cannot be used since the number of banking days per calendar month varies and because there are two levels of seasonality: between months and within months. We propose a daily time series model based on unobserved components that allows for the classic decomposition into trend, seasonal plus irregular, but it also includes components for intra-monthly, trading-day and length-of-month effects. Such components typically rely on stochastic cubic spline, polynomial and dummy variable functions. State space techniques are used for the recursive computation of the likelihood and forecasts functions with special allowance for irregular spacing. The model is operational for daily forecasting at the Dutch Ministry of Finance. We present the model specification and discuss estimation and forecasting results up to December 1999. A comparative forecast evaluation is also presented.  相似文献   

16.
This paper develops a flexible approach to combine forecasts of future spot rates with forecasts from time-series models or macroeconomic variables. We find empirical evidence that, accounting for both regimes in interest rate dynamics, and combining forecasts from different models, helps improve the out-of-sample forecasting performance for US short-term rates. Imposing restrictions from the expectations hypothesis on the forecasting model are found to help at long forecasting horizons.  相似文献   

17.
We summarize the literature on the effectiveness of combining forecasts by assessing the conditions under which combining is most valuable. Using data on the six US presidential elections from 1992 to 2012, we report the reductions in error obtained by averaging forecasts within and across four election forecasting methods: poll projections, expert judgment, quantitative models, and the Iowa Electronic Markets. Across the six elections, the resulting combined forecasts were more accurate than any individual component method, on average. The gains in accuracy from combining increased with the numbers of forecasts used, especially when these forecasts were based on different methods and different data, and in situations involving high levels of uncertainty. Such combining yielded error reductions of between 16% and 59%, compared to the average errors of the individual forecasts. This improvement is substantially greater than the 12% reduction in error that had been reported previously for combining forecasts.  相似文献   

18.
This paper exploits cross-sectional variation at the level of U.S. counties to generate real-time forecasts for the 2020 U.S. presidential election. The forecasting models are trained on data covering the period 2000–2016, using high-dimensional variable selection techniques. Our county-based approach contrasts the literature that focuses on national and state level data but uses longer time periods to train their models. The paper reports forecasts of popular and electoral college vote outcomes and provides a detailed ex-post evaluation of the forecasts released in real time before the election. It is shown that all of these forecasts outperform autoregressive benchmarks. A pooled national model using One-Covariate-at-a-time-Multiple-Testing (OCMT) variable selection significantly outperformed all models in forecasting the U.S. mainland national vote share and electoral college outcomes (forecasting 236 electoral votes for the Republican party compared to 232 realized). This paper also shows that key determinants of voting outcomes at the county level include incumbency effects, unemployment, poverty, educational attainment, house price changes, and international competitiveness. The results are also supportive of myopic voting: economic fluctuations realized a few months before the election tend to be more powerful predictors of voting outcomes than their long-horizon analogs.  相似文献   

19.
20.
Accurate solar forecasts are necessary to improve the integration of solar renewables into the energy grid. In recent years, numerous methods have been developed for predicting the solar irradiance or the output of solar renewables. By definition, a forecast is uncertain. Thus, the models developed predict the mean and the associated uncertainty. Comparisons are therefore necessary and useful for assessing the skill and accuracy of these new methods in the field of solar energy.The aim of this paper is to present a comparison of various models that provide probabilistic forecasts of the solar irradiance within a very strict framework. Indeed, we consider focusing on intraday forecasts, with lead times ranging from 1 to 6 h. The models selected use only endogenous inputs for generating the forecasts. In other words, the only inputs of the models are the past solar irradiance data. In this context, the most common way of generating the forecasts is to combine point forecasting methods with probabilistic approaches in order to provide prediction intervals for the solar irradiance forecasts. For this task, we selected from the literature three point forecasting models (recursive autoregressive and moving average (ARMA), coupled autoregressive and dynamical system (CARDS), and neural network (NN)), and seven methods for assessing the distribution of their error (linear model in quantile regression (LMQR), weighted quantile regression (WQR), quantile regression neural network (QRNN), recursive generalized autoregressive conditional heteroskedasticity (GARCHrls), sieve bootstrap (SB), quantile regression forest (QRF), and gradient boosting decision trees (GBDT)), leading to a comparison of 20 combinations of models.None of the model combinations clearly outperform the others; nevertheless, some trends emerge from the comparison. First, the use of the clear sky index ensures the accuracy of the forecasts. This derived parameter permits time series to be deseasonalized with missing data, and is also a good explanatory variable of the distribution of the forecasting errors. Second, regardless of the point forecasting method used, linear models in quantile regression, weighted quantile regression and gradient boosting decision trees are able to forecast the prediction intervals accurately.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号