共查询到16条相似文献,搜索用时 15 毫秒
1.
Robert J Vokurka Benito E Flores Stephen L Pearce 《International Journal of Forecasting》1996,12(4):495-512
We examined automatic feature identification and graphical support in rule-based expert systems for forecasting. The rule-based expert forecasting system (RBEFS) includes predefined rules to automatically identify features of a time series and selects the extrapolation method to be used. The system can also integrate managerial judgment using a graphical interface that allows a user to view alternate extrapolation methods two at a time. The use of the RBEFS led to a significant improvement in accuracy compared to equal-weight combinations of forecasts. Further improvement were achieved with the user interface. For 6-year ahead ex ante forecasts, the rule-based expert forecasting system has a median absolute percentage error (MdAPE) 15% less than that of equally weighted combined forecasts and a 33% improvement over the random walk. The user adjusted forecasts had a MdAPE 20% less than that of the expert system. The results of the system are also compared to those of an earlier rule-based expert system which required human judgments about some features of the time series data. The results of the comparison of the two rule-based expert systems showed no significant differences between them. 相似文献
2.
This paper shows that forecasting accuracy can be improved through better estimation of seasonal factors under conditions for which relatively simple methods are preferred, such as relatively few historical data, noisy data, and/or a large number of series to be forecasted. In such situations, the preferred method of seasonal adjustment is often ratio-to-moving-averages (classical) decomposition. This paper proposes two shrinkage estimators to improve the accuracy of classical decomposition seasonal factors. In a simulation study, both of the proposed estimators provided consistently greater accuracy than classical decomposition, with the improvement sometimes being dramatic. The performances of the two estimators depended on characteristics of the series, and guidelines were developed for choosing one of them under a given set of conditions. For a set of monthly, M-competition series, greater forecasting accuracy was achieved when either of the proposed methods was used for seasonal adjustment rather than classical decomposition, and the greatest accuracy was achieved by following the guidelines for choosing a method. 相似文献
3.
《International Journal of Forecasting》2014,30(2):395-401
This paper provides detailed information about team Leustagos’ approach to the wind power forecasting track of GEFCom 2012. The task was to predict the hourly power generation at seven wind farms, 48 hours ahead. The problem was addressed by extracting time- and weather-related features, which were used to build gradient-boosted decision trees and linear regression models. This approach achieved first place in both the public and private leaderboards. 相似文献
4.
This paper presents a new univariate forecasting method. The method is based on the concept of modifying the local curvature of the time-series through a coefficient ‘Theta’ (the Greek letter θ), that is applied directly to the second differences of the data. The resulting series that are created maintain the mean and the slope of the original data but not their curvatures. These new time series are named Theta-lines. Their primary qualitative characteristic is the improvement of the approximation of the long-term behavior of the data or the augmentation of the short-term features, depending on the value of the Theta coefficient. The proposed method decomposes the original time series into two or more different Theta-lines. These are extrapolated separately and the subsequent forecasts are combined. The simple combination of two Theta-lines, the Theta=0 (straight line) and Theta=2 (double local curves) was adopted in order to produce forecasts for the 3003 series of the M3 competition. The method performed well, particularly for monthly series and for microeconomic data. 相似文献
5.
This paper suggests a novel inhomogeneous Markov switching approach for the probabilistic forecasting of industrial companies’ electricity loads, for which the load switches at random times between production and standby regimes. The model that we propose describes the transitions between the regimes using a hidden Markov chain with time-varying transition probabilities that depend on calendar variables. We model the demand during the production regime using an autoregressive moving-average (ARMA) process with seasonal patterns, whereas we use a much simpler model for the standby regime in order to reduce the complexity. The maximum likelihood estimation of the parameters is implemented using a differential evolution algorithm. Using the continuous ranked probability score (CRPS) to evaluate the goodness-of-fit of our model for probabilistic forecasting, it is shown that this model often outperforms classical additive time series models, as well as homogeneous Markov switching models. We also propose a simple procedure for classifying load profiles into those with and without regime-switching behaviors. 相似文献
6.
《International Journal of Forecasting》2020,36(2):588-606
Many regions on earth face daily limitations in the quantity and quality of the water resources available. As a result, it is necessary to implement reliable methodologies for water consumption forecasting that will enable the better management and planning of water resources. This research analyses, for the first time, a large database containing data from 2 million water meters in 274 unique postal codes, in one of the most densely populated areas of Europe, which faces issues of droughts and overconsumption in the hot summer months. Using the R programming language, we built and tested three alternative forecasting methodologies, employing univariate forecasting techniques including a machine-learning algorithm, with very promising results. 相似文献
7.
Forecast combinations of computational intelligence and linear models for the NN5 time series forecasting competition 总被引:1,自引:0,他引:1
Robert R. AndrawisAuthor Vitae Hisham El-ShishinyAuthor Vitae 《International Journal of Forecasting》2011,27(3):672
In this work we introduce the forecasting model with which we participated in the NN5 forecasting competition (the forecasting of 111 time series representing daily cash withdrawal amounts at ATM machines). The main idea of this model is to utilize the concept of forecast combination, which has proven to be an effective methodology in the forecasting literature. In the proposed system we attempted to follow a principled approach, and make use of some of the guidelines and concepts that are known in the forecasting literature to lead to superior performance. For example, we considered various previous comparison studies and time series competitions as guidance in determining which individual forecasting models to test (for possible inclusion in the forecast combination system). The final model ended up consisting of neural networks, Gaussian process regression, and linear models, combined by simple average. We also paid extra attention to the seasonality aspect, decomposing the seasonality into weekly (which is the strongest one), day of the month, and month of the year seasonality. 相似文献
8.
How effective are different approaches for the provision of forecasting support? Forecasts may be either unaided or made with the help of statistical forecasts. In practice, the latter are often crude forecasts that do not take sporadic perturbations into account. Most research considers forecasts based on series that have been cleansed of perturbation effects. This paper considers an experiment in which people made forecasts from time series that were disturbed by promotions. In all conditions, under-forecasting occurred during promotional periods and over-forecasting during normal ones. The relative sizes of these effects depended on the proportions of periods in the data series that contained promotions. The statistical forecasts improved the forecasting accuracy, not because they reduced these biases, but because they decreased the random error (scatter). The performance improvement did not depend on whether the forecasts were based on cleansed series. Thus, the effort invested in producing cleansed time series from which to forecast may not be warranted: companies may benefit from giving their forecasters even crude statistical forecasts. In a second experiment, forecasters received optimal statistical forecasts that took the effects of promotions into account fully. This increased the accuracy because the biases were almost eliminated and the random error was reduced by 20%. Thus, the additional effort required to produce forecasts that take promotional effects into account is worthwhile. 相似文献
9.
Combination of long term and short term forecasts, with application to tourism demand forecasting 总被引:5,自引:0,他引:5
Forecast combination is a well-established and well-tested approach for improving the forecasting accuracy. One beneficial strategy is to use constituent forecasts that have diverse information. In this paper we consider the idea of diversity being accomplished by using different time aggregations. For example, we could create a yearly time series from a monthly time series and produce forecasts for both, then combine the forecasts. These forecasts would each be tracking the dynamics of different time scales, and would therefore add diverse types of information. A comparison of several forecast combination methods, performed in the context of this setup, shows that this is indeed a beneficial strategy and generally provides a forecasting performance that is better than the performances of the individual forecasts that are combined.As a case study, we consider the problem of forecasting monthly tourism numbers for inbound tourism to Egypt. Specifically, we consider 33 individual source countries, as well as the aggregate. The novel combination strategy also produces a generally improved forecasting accuracy. 相似文献
10.
《International Journal of Forecasting》2020,36(4):1329-1341
The Elo rating system is one of the most popular methods for estimating the ability of competitors over time in sport. The standard Elo system focuses on predicting wins and losses, but there is often also interest in the margin of victory (MOV) because it reflects the magnitude of a result. There have been few theoretical investigations and comparisons of Elo-based models. In the present study, we propose four model options for an MOV Elo system: linear, joint additive, multiplicative, and logistic. Notations and guidance for tuning each model are provided. The models were applied to men’s tennis for several MOV choices. The results showed that all MOV approaches using within-set statistics improved the predictive performance compared with the standard Elo system, but only the joint additive model yielded unbiased ratings with stable variance in the simulation study. This general framework for MOV Elo ratings provide sports modelers with a new set of tools for building systems to rate competitors and forecast outcomes in sport. 相似文献
11.
A restricted forecasting compatibility test for Vector Autoregressive Error Correction models is analyzed in this work. It is shown that a variance–covariance matrix associated with the restrictions can be used to cancel out model dynamics and interactions between restrictions. This allows us to interpret the joint compatibility test as a composition of the corresponding single restriction compatibility tests. These tests are useful for appreciating the contribution of each and every restriction to the joint compatibility between the whole set of restrictions and the unrestricted forecasts. An estimated process adjustment for the test is derived and the resulting feasible joint compatibility test turns out to have better performance than the original one. An empirical illustration of the usefulness of the proposed test makes use of Mexican macroeconomic data and the targets proposed by the Mexican Government for the year 2003. 相似文献
12.
Forecasting using a periodic transfer function: with an application to the UK price of ferrous scrap
The familiar concept of cointegration enables us to determine whether or not there is a long-run relationship between two integrated time series. However, this may not capture short-run effects such as seasonality. Two series which display different seasonal effects can still be cointegrated. Seasonality may arise independently of the long-run relationship between two time series or, indeed, the long-run relationship may itself be seasonal. The market for recycled ferrous scrap displays these features: the US and UK scrap prices are cointegrated, yet the local markets exhibit different forms of seasonality. The paper addresses the problem of using both cointegrating and seasonal relationships in forecasting time series through the use of periodic transfer function models. We consider the problems of testing for cointegration between series with differing seasonal patterns and develop a periodic transfer function model for the US and UK scrap markets. Forecast comparisons with other time series models suggest that forecasting efficiency may be improved by allowing for periodicity but that such improvement is by no means guaranteed. The correct specification of the periodic component of the model is critical for forecast accuracy. 相似文献
13.
A. Prskawetz T. Kgel W.C. Sanderson S. Scherbov 《International Journal of Forecasting》2007,23(4):587-602
During recent years there has been an increasing awareness of the explanatory power of population age structure variables in economic growth regressions. We estimate a new cross-country regression model of the effects of age structure change on economic growth. We use the new model and recent probabilistic demographic forecasts for India to derive the uncertainty of predicted economic growth rates caused by the uncertainty in demographic developments. 相似文献
14.
In the simple errors-in-variables model the least squares estimator of the slope coefficient is known to be biased towards zero for finite sample size as well as asymptotically. In this paper we suggest a new corrected least squares estimator, where the bias correction is based on approximating the finite sample bias by a lower bound. This estimator is computationally very simple. It is compared with previously proposed corrected least squares estimators, where the correction aims at removing the asymptotic bias or the exact finite sample bias. For each type of corrected least squares estimators we consider the theoretical form, which depends on an unknown parameter, as well as various feasible forms. An analytical comparison of the theoretical estimators is complemented by a Monte Carlo study evaluating the performance of the feasible estimators. The new estimator proposed in this paper proves to be superior with respect to the mean squared error. 相似文献
15.
We construct a stylized model of transfers within a federation and apply it to the European Union. Our approach differs from that of most of the existing literature in that we fix the preferences for redistribution of resources among a federation's members, rather than fix the current budgetary rules or modify them on the basis of assumed scenarios. The model is tested (successfully) by assessing its ability to predict the effects of the last (1995) enlargement on the European budget. We then use the estimated model to predict the reallocation of the Union's net transfers after the upcoming Eastern enlargement. Our estimates of transfers to the incoming member states exceed those of the rest of the literature. Our results can be interpreted in one of two ways: first, either the European Union, in its collective decision-making process (that in the future will include the five incoming countries as voting members), will institute new rules and programs to further reduce the regional disparities in income, or second, if the current rules and programs are maintained, then the Eastern enlargement would result in a reduction in the “depth” of the Union. The approach we introduce can be more generally applied to the analysis of other intergovernmental or international organizations. 相似文献
16.
《Socio》2022
This paper proposes an extension of the non-parametric long-term evaluation of efficiency, the conditional panel data DEA model, which takes into account the panel structure of the data and, at the same time, incorporates the role of contextual factors in the estimations. Its application to the education sector for the period analyzed (2009–2014) shows the utility of this method, since it obtains more representative efficiency scores for the complete time-period, is more robust to external shocks, and allows improvements to the decision-making process in the allocation of the budget available for the public education sector. The results are clear and present an evolution towards the convergence of the efficiency scores, precisely in a time period when hard budget constraints severely reduced the resources available for public schools. 相似文献