共查询到20条相似文献,搜索用时 46 毫秒
1.
Bruno Quaresma Bastos Fernando Luiz Cyrino Oliveira Ruy Luiz Milidiú 《International Journal of Forecasting》2021,37(2):949-970
The increasing penetration of intermittent renewable energy in power systems brings operational challenges. One way of supporting them is by enhancing the predictability of renewables through accurate forecasting. Convolutional Neural Networks (Convnets) provide a successful technique for processing space-structured multi-dimensional data. In our work, we propose the U-Convolutional model to predict hourly wind speeds for a single location using spatio-temporal data with multiple explanatory variables as an input. The U-Convolutional model is composed of a U-Net part, which synthesizes input information, and a Convnet part, which maps the synthesized data into a single-site wind prediction. We compare our approach with advanced Convnets, a fully connected neural network, and univariate models. We use time series from the Climate Forecast System Reanalysis as datasets and select temperature and u- and v-components of wind as explanatory variables. The proposed models are evaluated at multiple locations (totaling 181 target series) and multiple forecasting horizons. The results indicate that our proposal is promising for spatio-temporal wind speed prediction, with results that show competitive performance on both time horizons for all datasets. 相似文献
2.
《International Journal of Forecasting》2022,38(4):1442-1447
This paper presents our 13th place solution to the M5 Forecasting - Uncertainty challenge and compares it against GoodsForecast’s second-place solution. This challenge aims to estimate the median and eight other quantiles of various product sales in Walmart. Both solutions handle the predictions of median and other quantiles separately. Our solution hybridizes LightGBM and DeepAR in various ways for median and quantile estimation, based on the aggregation levels of the sales. Similarly, GoodsForecast’s solution also utilized a hybrid approach, i.e., LightGBM for point estimation and a Histogram algorithm for quantile estimation. In this paper, the differences between the two solutions and their results are highlighted. Despite our solution only taking 13th place in the challenge with the competition metric, it achieves the lowest average rank based on the multiple comparisons with the best (MCB) test which implies the most accurate forecasts in the majority of the series. It also indicates better performance at the product-store aggregation level which comprises 30,490 (71.2% of all) series compared to most teams. 相似文献
3.
《International Journal of Forecasting》2023,39(2):884-900
We extend neural basis expansion analysis (NBEATS) to incorporate exogenous factors. The resulting method, called NBEATSx, improves on a well-performing deep learning model, extending its capabilities by including exogenous variables and allowing it to integrate multiple sources of useful information. To showcase the utility of the NBEATSx model, we conduct a comprehensive study of its application to electricity price forecasting tasks across a broad range of years and markets. We observe state-of-the-art performance, significantly improving the forecast accuracy by nearly 20% over the original NBEATS model, and by up to 5% over other well-established statistical and machine learning methods specialized for these tasks. Additionally, the proposed neural network has an interpretable configuration that can structurally decompose time series, visualizing the relative impact of trend and seasonal components and revealing the modeled processes’ interactions with exogenous factors. To assist related work, we made the code available in a dedicated repository. 相似文献
4.
Forecasting cash demands at automatic teller machines (ATMs) is challenging, due to the heteroskedastic nature of such time series. Conventional global learning computational intelligence (CI) models, with their generalized learning behaviors, may not capture the complex dynamics and time-varying characteristics of such real-life time series data efficiently. In this paper, we propose to use a novel local learning model of the pseudo self-evolving cerebellar model articulation controller (PSECMAC) associative memory network to produce accurate forecasts of ATM cash demands. As a computational model of the human cerebellum, our model can incorporate local learning to effectively model the complex dynamics of heteroskedastic time series. We evaluated the forecasting performance of our PSECMAC model against the performances of current established CI and regression models using the NN5 competition dataset of 111 empirical daily ATM cash withdrawal series. The evaluation results show that the forecasting capability of our PSECMAC model exceeds that of the benchmark local and global-learning based models. 相似文献
5.
6.
The paper proposes a novel approach to predict intraday directional-movements of currency-pairs in the foreign exchange market based on news story events in the economy calendar. Prior work on using textual data for forecasting foreign exchange market developments does not consider economy calendar events. We consider a rich set of text analytics methods to extract information from news story events and propose a novel sentiment dictionary for the foreign exchange market. The paper shows how news events and corresponding news stories provide valuable information to increase forecast accuracy and inform trading decisions. More specifically, using textual data together with technical indicators as inputs to different machine learning models reveals that the accuracy of market predictions shortly after the release of news is substantially higher than in other periods, which suggests the feasibility of news-based trading. Furthermore, empirical results identify a combination of a gradient boosting algorithm, our new sentiment dictionary, and text-features based-on term frequency weighting to offer the most accurate forecasts. These findings are valuable for traders, risk managers and other consumers of foreign exchange market forecasts and offer guidance how to design accurate prediction systems. 相似文献
7.
《International Journal of Forecasting》2022,38(4):1500-1506
The main objective of the M5 competition, which focused on forecasting the hierarchical unit sales of Walmart, was to evaluate the accuracy and uncertainty of forecasting methods in the field to identify best practices and highlight their practical implications. However, can the findings of the M5 competition be generalized and exploited by retail firms to better support their decisions and operation? This depends on the extent to which M5 data is sufficiently similar to unit sales data of retailers operating in different regions selling different product types and considering different marketing strategies. To answer this question, we analyze the characteristics of the M5 time series and compare them with those of two grocery retailers, namely Corporación Favorita and a major Greek supermarket chain, using feature spaces. Our results suggest only minor discrepancies between the examined data sets, supporting the representativeness of the M5 data. 相似文献
8.
We review the results of six forecasting competitions based on the online data science platform Kaggle, which have been largely overlooked by the forecasting community. In contrast to the M competitions, the competitions reviewed in this study feature daily and weekly time series with exogenous variables, business hierarchy information, or both. Furthermore, the Kaggle data sets all exhibit higher entropy than the M3 and M4 competitions, and they are intermittent.In this review, we confirm the conclusion of the M4 competition that ensemble models using cross-learning tend to outperform local time series models and that gradient boosted decision trees and neural networks are strong forecast methods. Moreover, we present insights regarding the use of external information and validation strategies, and discuss the impacts of data characteristics on the choice of statistics or machine learning methods. Based on these insights, we construct nine ex-ante hypotheses for the outcome of the M5 competition to allow empirical validation of our findings. 相似文献
9.
《International Journal of Forecasting》2019,35(2):573-579
Performance measures of point forecasts are expressed commonly as skill scores, in which the performance gain from using one forecasting system over another is expressed as a proportion of the gain achieved by forecasting that outcome perfectly. Increasingly, it is common to express scores of probabilistic forecasts in this form; however, this paper presents three criticisms of this approach. Firstly, initial condition uncertainty (which is outside the forecaster’s control) limits the capacity to improve a probabilistic forecast, and thus a ‘perfect’ score is often unattainable. Secondly, the skill score forms of the ignorance and Brier scores are biased. Finally, it is argued that the skill score form of scoring rules destroys the useful interpretation in terms of the relative skill levels of two forecasting systems. Indeed, it is often misleading, and useful information is lost when the skill score form is used in place of the original score. 相似文献
10.
《International Journal of Forecasting》2022,38(4):1346-1364
In this study, we present the results of the M5 “Accuracy” competition, which was the first of two parallel challenges in the latest M competition with the aim of advancing the theory and practice of forecasting. The main objective in the M5 “Accuracy” competition was to accurately predict 42,840 time series representing the hierarchical unit sales for the largest retail company in the world by revenue, Walmart. The competition required the submission of 30,490 point forecasts for the lowest cross-sectional aggregation level of the data, which could then be summed up accordingly to estimate forecasts for the remaining upward levels. We provide details of the implementation of the M5 “Accuracy” challenge, as well as the results and best performing methods, and summarize the major findings and conclusions. Finally, we discuss the implications of these findings and suggest directions for future research. 相似文献
11.
《International Journal of Forecasting》2020,36(3):851-872
This paper estimates a three-frequency dynamic factor model for nowcasting the Canadian provincial gross domestic product (GDP). The Canadian provincial GDP at market prices is released by Statistics Canada annually with a significant lag (11 months). This necessitates a mixed-frequency approach that can process timely monthly data, the quarterly national accounts, and the annual target variable. The model is estimated on a wide set of provincial, national and international data. In a pseudo real-time exercise, we find that the model outperforms simple benchmarks and is competitive with more sophisticated mixed-frequency approaches (MIDAS models). We also find that variables from the Labour Force Survey are important predictors of real activity. This paper expands previous work that has documented the importance of foreign variables for nowcasting Canadian GDP. This paper finds that including national and foreign predictors is useful for Ontario, while worsening the nowcast performance for smaller provinces. 相似文献
12.
This paper presents a new univariate forecasting method. The method is based on the concept of modifying the local curvature of the time-series through a coefficient ‘Theta’ (the Greek letter θ), that is applied directly to the second differences of the data. The resulting series that are created maintain the mean and the slope of the original data but not their curvatures. These new time series are named Theta-lines. Their primary qualitative characteristic is the improvement of the approximation of the long-term behavior of the data or the augmentation of the short-term features, depending on the value of the Theta coefficient. The proposed method decomposes the original time series into two or more different Theta-lines. These are extrapolated separately and the subsequent forecasts are combined. The simple combination of two Theta-lines, the Theta=0 (straight line) and Theta=2 (double local curves) was adopted in order to produce forecasts for the 3003 series of the M3 competition. The method performed well, particularly for monthly series and for microeconomic data. 相似文献
13.
《International Journal of Forecasting》2023,39(2):992-1004
Low visibility conditions affect safety and traffic operations, leading to adverse scenarios that often result in serious accidents. Due to the complexity and variability associated with modeling weather variables, visibility forecasting remains a highly challenging task and a matter of significant interest for transportation agencies nationwide. Given that the literature on single-step visibility forecasting is very scarce, this study explores the use of deep learning models for single-step visibility forecasting using time series climatological data. Five different deep learning models were developed, trained, and tested using data from two weather stations located in the US state of Florida, which is one of the top states nationwide dealing with low visibility problems. The authors provide discussions of the models’ results and areas for future research. 相似文献
14.
We perform out-of-sample predictions on several dollar exchange rate returns by using time-delay embedding techniques and a local linear predictor. We compared our predictions with those by a mean value predictor. Some of our predictions of the exchange rate returns outperform the predictions of the same series by the mean value predictor. However, these improvements were not statistically significant. Another interesting result in this paper which was obtained by using a recently developed technique of nonlinear dynamics is that all exchange rate return series we tested have a very high embedding dimension. Additionally, evidence indicates that these series are likely generated by high dimensional systems with measurement noise or by high dimensional nonlinear stochastic systems, that is, nonlinear deterministic systems with dynamic noise. 相似文献
15.
《International Journal of Forecasting》2022,38(2):635-647
Near-term forecasts, also called nowcasts, are most challenging but also most important when the economy experiences an abrupt change. In this paper, we explore the performance of models with different information sets and data structures in order to best nowcast US initial unemployment claims in spring of 2020 in the midst of the COVID-19 pandemic. We show that the best model, particularly near the structural break in claims, is a state-level panel model that includes dummy variables to capture the variation in timing of state-of-emergency declarations. Autoregressive models perform poorly at first but catch up relatively quickly. The state-level panel model, exploiting the variation in timing of state-of-emergency declarations, also performs better than models including Google Trends. Our results suggest that in times of structural change there is a bias–variance tradeoff. Early on, simple approaches to exploit relevant information in the cross sectional dimension improve forecasts, but in later periods the efficiency of autoregressive models dominates. 相似文献
16.
I compare the forecasts of returns from the mean predictor (optimal under MSE), with the pseudo-optimal and optimal predictor for an asymmetric loss function under the assumption that agents have an asymmetric LINLIN loss function. The results strongly suggest not using the conditional mean predictor under conditions of asymmetry. In general, forecasts can be improved by the use of optimal predictor rather than the pseudo-optimal predictor, suggesting that the loss reduction from using the optimal predictor can actually be important for practitioners as well. 相似文献
17.
Paulo J.L. AdeodatoAuthor Vitae Adrian L. ArnaudAuthor VitaeGermano C. VasconcelosAuthor Vitae Rodrigo C.L.V. CunhaAuthor Vitae Domingos S.M.P. MonteiroAuthor Vitae 《International Journal of Forecasting》2011,27(3):661
This work describes an award winning approach for solving the NN3 Forecasting Competition problem, focusing on the sound experimental validation of its main innovative feature. The NN3 forecasting task consisted of predicting 18 future values of 111 short monthly time series. The main feature of the approach was the use of the median for combining the forecasts of an ensemble of 15 MLPs to predict each time series. Experimental comparison to a single MLP shows that the ensemble increases the performance accuracy for multiple-step ahead forecasting. This system performed well on the withheld data, having finished as the second best solution of the competition with an SMAPE of 16.17%. 相似文献
18.
Mathieu David Mazorra Aguiar Luis Philippe Lauret 《International Journal of Forecasting》2018,34(3):529-547
Accurate solar forecasts are necessary to improve the integration of solar renewables into the energy grid. In recent years, numerous methods have been developed for predicting the solar irradiance or the output of solar renewables. By definition, a forecast is uncertain. Thus, the models developed predict the mean and the associated uncertainty. Comparisons are therefore necessary and useful for assessing the skill and accuracy of these new methods in the field of solar energy.The aim of this paper is to present a comparison of various models that provide probabilistic forecasts of the solar irradiance within a very strict framework. Indeed, we consider focusing on intraday forecasts, with lead times ranging from 1 to 6 h. The models selected use only endogenous inputs for generating the forecasts. In other words, the only inputs of the models are the past solar irradiance data. In this context, the most common way of generating the forecasts is to combine point forecasting methods with probabilistic approaches in order to provide prediction intervals for the solar irradiance forecasts. For this task, we selected from the literature three point forecasting models (recursive autoregressive and moving average (ARMA), coupled autoregressive and dynamical system (CARDS), and neural network (NN)), and seven methods for assessing the distribution of their error (linear model in quantile regression (LMQR), weighted quantile regression (WQR), quantile regression neural network (QRNN), recursive generalized autoregressive conditional heteroskedasticity (GARCHrls), sieve bootstrap (SB), quantile regression forest (QRF), and gradient boosting decision trees (GBDT)), leading to a comparison of 20 combinations of models.None of the model combinations clearly outperform the others; nevertheless, some trends emerge from the comparison. First, the use of the clear sky index ensures the accuracy of the forecasts. This derived parameter permits time series to be deseasonalized with missing data, and is also a good explanatory variable of the distribution of the forecasting errors. Second, regardless of the point forecasting method used, linear models in quantile regression, weighted quantile regression and gradient boosting decision trees are able to forecast the prediction intervals accurately. 相似文献
19.
《International Journal of Forecasting》2020,36(3):1181-1191
Probabilistic forecasting, i.e., estimating a time series’ future probability distribution given its past, is a key enabler for optimizing business processes. In retail businesses, for example, probabilistic demand forecasts are crucial for having the right inventory available at the right time and in the right place. This paper proposes DeepAR, a methodology for producing accurate probabilistic forecasts, based on training an autoregressive recurrent neural network model on a large number of related time series. We demonstrate how the application of deep learning techniques to forecasting can overcome many of the challenges that are faced by widely-used classical approaches to the problem. By means of extensive empirical evaluations on several real-world forecasting datasets, we show that our methodology produces more accurate forecasts than other state-of-the-art methods, while requiring minimal manual work. 相似文献
20.
Forecasting residential burglary 总被引:1,自引:0,他引:1
Following the work of Dhiri et al. [Modelling and predicting property crime trends. Home Office Research Study 198 (1999). London: HMSO] at the Home Office predicting recorded burglary and theft for England and Wales to the year 2001, econometric and time series models were constructed for predicting recorded residential burglary to the same date. A comparison between the Home Office econometric predictions and the less alarming econometric predictions made in this paper identified the differences as stemming from the particular set of variables used in the models. However, the Home Office and one of our econometric models adopted an error correction form which appeared to be the main reason why these models predicted increases in burglary. To identify the role of error correction in these models, time series models were built for the purpose of comparison, all of which predicted substantially lower numbers of residential burglaries. The years 1998–2001 appeared to offer an opportunity to test the utility of error correction models in the analysis of criminal behaviour. Subsequent to the forecasting exercise carried out in 1999, recorded outcomes have materialised, which point to the superiority of time series models compared to error correction models for the short-run forecasting of property crime. This result calls into question the concept of a long-run equilibrium relationship for crime. 相似文献