首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
  总被引:1,自引:0,他引:1  
We consider the problem of partial hedging of derivative risk in a stochastic volatility environment. It is related to state-dependent utility maximization problems in classical economics. We derive the dual problem from the Legendre transform of the associated Bellman equation and interpret the optimal strategy as the perfect hedging strategy for a modified claim. Under the assumption that volatility is fast mean-reverting and using a singular perturbation analysis, we derive approximate value functions and strategies that are easy to implement and study. The analysis identifies the usual mean historical volatility and the harmonically averaged long-run volatility as important statistics for such optimization problems without further specification of a stochastic volatility model. The approximation can be improved by specifying a model and can be calibrated for the leverage effect from the implied volatility skew. We study the effectiveness of these strategies using simulated stock paths.  相似文献   

2.
    
We consider an optimal investment problem with intermediate consumption and random endowment, in an incomplete semimartingale model of the financial market. We establish the key assertions of the utility maximization theory, assuming that both primal and dual value functions are finite in the interiors of their domains and that the random endowment at maturity can be dominated by the terminal value of a self‐financing wealth process. In order to facilitate the verification of these conditions, we present alternative, but equivalent conditions, under which the conclusions of the theory hold.  相似文献   

3.
    
We study the problem of expected utility maximization in a large market, i.e., a market with countably many traded assets. Assuming that agents have von Neumann–Morgenstern preferences with stochastic utility function and that consumption occurs according to a stochastic clock, we obtain the “usual” conclusions of the utility maximization theory. We also give a characterization of the value function in a large market in terms of a sequence of value functions in finite‐dimensional models.  相似文献   

4.
    
We study the Merton portfolio optimization problem in the presence of stochastic volatility using asymptotic approximations when the volatility process is characterized by its timescales of fluctuation. This approach is tractable because it treats the incomplete markets problem as a perturbation around the complete market constant volatility problem for the value function, which is well understood. When volatility is fast mean‐reverting, this is a singular perturbation problem for a nonlinear Hamilton–Jacobi–Bellman partial differential equation, while when volatility is slowly varying, it is a regular perturbation. These analyses can be combined for multifactor multiscale stochastic volatility models. The asymptotics shares remarkable similarities with the linear option pricing problem, which follows from some new properties of the Merton risk tolerance function. We give examples in the family of mixture of power utilities and also use our asymptotic analysis to suggest a “practical” strategy that does not require tracking the fast‐moving volatility. In this paper, we present formal derivations of asymptotic approximations, and we provide a convergence proof in the case of power utility and single‐factor stochastic volatility. We assess our approximation in a particular case where there is an explicit solution.  相似文献   

5.
    
There are two major streams of literature on the modeling of financial bubbles: the strict local martingale framework and the Johansen–Ledoit–Sornette (JLS) financial bubble model. Based on a class of models that embeds the JLS model and can exhibit strict local martingale behavior, we clarify the connection between these previously disconnected approaches. While the original JLS model is never a strict local martingale, there are relaxations that can be strict local martingales and that preserve the key assumption of a log‐periodic power law for the hazard rate of the time of the crash. We then study the optimal investment problem for an investor with constant relative risk aversion in this model. We show that for positive instantaneous expected returns, investors with relative risk aversion above one always ride the bubble.  相似文献   

6.
For a relaxed investor—one whose relative risk aversion vanishes as wealth becomes large—the utility maximization problem may not have a solution in the classical sense of an optimal payoff represented by a random variable. This nonexistence puzzle was discovered by Kramkov and Schachermayer (1999) , who introduced the reasonable asymptotic elasticity condition to exclude such situations. Utility maximization becomes well posed again representing payoffs as measures on the sample space, including those allocations singular with respect to the physical probability. The expected utility of such allocations is understood as the maximal utility of its approximations with classical payoffs—the relaxed expected utility. This paper decomposes relaxed expected utility into its classical and singular parts, represents the singular part in integral form, and proves the existence of optimal solutions for the utility maximization problem, without conditions on the asymptotic elasticity. Key to this result is the Polish space structure assumed on the sample space.  相似文献   

7.
    
The problem of robust utility maximization in an incomplete market with volatility uncertainty is considered, in the sense that the volatility of the market is only assumed to lie between two given bounds. The set of all possible models (probability measures) considered here is nondominated. We propose studying this problem in the framework of second‐order backward stochastic differential equations (2BSDEs for short) with quadratic growth generators. We show for exponential, power, and logarithmic utilities that the value function of the problem can be written as the initial value of a particular 2BSDE and prove existence of an optimal strategy. Finally, several examples which shed more light on the problem and its links with the classical utility maximization one are provided. In particular, we show that in some cases, the upper bound of the volatility interval plays a central role, exactly as in the option pricing problem with uncertain volatility models.  相似文献   

8.
In the style of Rogers (2001) , we give a unified method for finding the dual problem in a given model by stating the problem as an unconstrained Lagrangian problem. In a theoretical part we prove our main theorem, Theorem 3.1, which shows that under a number of conditions the value of the dual and primal problems is equal. The theoretical setting is sufficiently general to be applied to a large number of examples including models with transaction costs, such as Cvitanic and Karatzas (1996) (which could not be covered by the setting in Rogers [2001] ). To apply the general result one has to verify the assumptions of Theorem 3.1 for each concrete example. We show how the method applies for two examples, first Cuoco and Liu (1992) and second Cvitanic and Karatzas (1996) .  相似文献   

9.
PORTFOLIO OPTIMIZATION WITH JUMPS AND UNOBSERVABLE INTENSITY PROCESS   总被引:2,自引:0,他引:2  
We consider a financial market with one bond and one stock. The dynamics of the stock price process allow jumps which occur according to a Markov-modulated Poisson process. We assume that there is an investor who is only able to observe the stock price process and not the driving Markov chain. The investor's aim is to maximize the expected utility of terminal wealth. Using a classical result from filter theory it is possible to reduce this problem with partial observation to one with complete observation. With the help of a generalized Hamilton–Jacobi–Bellman equation where we replace the derivative by Clarke's generalized gradient, we identify an optimal portfolio strategy. Finally, we discuss some special cases of this model and prove several properties of the optimal portfolio strategy. In particular, we derive bounds and discuss the influence of uncertainty on the optimal portfolio strategy.  相似文献   

10.
    
We study the problem of maximizing terminal utility for an agent facing model uncertainty, in a frictionless discrete‐time market with one safe asset and finitely many risky assets. We show that an optimal investment strategy exists if the utility function, defined either on the positive real line or on the whole real line, is bounded from above. We further find that the boundedness assumption can be dropped, provided that we impose suitable integrability conditions, related to some strengthened form of no‐arbitrage. These results are obtained in an alternative framework for model uncertainty, where all possible dynamics of the stock prices are represented by a collection of stochastic processes on the same filtered probability space, rather than by a family of probability measures.  相似文献   

11.
In this paper, we study the risk-aversion behavior of an agent in the dynamic framework of consumption/investment decision making that allows the possibility of bankruptcy. Agent's consumption utility is assumed to be represented by a strictly increasing, strictly concave, continuously differentiable function in the general case and by a HARA-type function in the special case treated in the paper. Coefficients of absolute and relative risk aversion are defined to be the well-known curvature measures associated with the derived utility of wealth obtained as the value function of the agent's optimization problem. Through an analysis of these coefficients, we show how the change in agent's risk aversion as his wealth changes depends on his consumption utility and the other problem parameters, including the payment at bankruptcy. Moreover, in the HARA case, we can conclude that the agent's relative risk aversion is nondecreasing with wealth, while his absolute risk aversion is decreasing with wealth only if he is sufficiently wealthy. At lower wealth levels, however, the agent's absolute risk aversion may increase with wealth in some cases.  相似文献   

12.
This paper solves the mean–variance hedging problem in Heston's model with a stochastic opportunity set moving systematically with the volatility of stock returns. We allow for correlation between stock returns and their volatility (so-called leverage effect). Our contribution is threefold: using a new concept of opportunity-neutral measure we present a simplified strategy for computing a candidate solution in the correlated case. We then go on to show that this candidate generates the true variance-optimal martingale measure; this step seems to be partially missing in the literature. Finally, we derive formulas for the hedging strategy and the hedging error.  相似文献   

13.
An agent can invest in a high-yield bond and a low-yield bond, holding either long or short positions in either asset. Any movement of money between these two assets incurs a transaction cost proportional to the size of the transaction. the low-yield bond is liquid in the sense that wealth invested in this bond can be consumed directly without a transaction cost; wealth invested in the high-yield bond can be consumed only by first moving it into the low-yield bond. the problem of optimal consumption and investment on an infinite planning horizon is solved for a class of utility functions larger than the class of power functions.  相似文献   

14.
    
This paper introduces a dual problem to study a continuous‐time consumption and investment problem with incomplete markets and Epstein–Zin stochastic differential utilities. Duality between the primal and dual problems is established. Consequently, the optimal strategy of this consumption and investment problem is identified without assuming several technical conditions on market models, utility specifications, and agent's admissible strategies. Meanwhile, the minimizer of the dual problem is identified as the utility gradient of the primal value and is economically interpreted as the “least favorable” completion of the market.  相似文献   

15.
We consider the problem facing a risk averse agent who seeks to liquidate or exercise a portfolio of (infinitely divisible) perpetual American style options on a single underlying asset. The optimal liquidation strategy is of threshold form and can be characterized explicitly as the solution of a calculus of variations problem. Apart from a possible initial exercise of a tranche of options, the optimal behavior involves liquidating the portfolio in infinitesimal amounts, but at times which are singular with respect to calendar time. We consider a number of illustrative examples involving CRRA and CARA utility, stocks, and portfolios of options with different strikes, and a model where the act of exercising has an impact on the underlying asset price.  相似文献   

16.
    
Rough stochastic volatility models have attracted a lot of attention recently, in particular for the linear option pricing problem. In this paper, starting with power utilities, we propose to use a martingale distortion representation of the optimal value function for the nonlinear asset allocation problem in a (non‐Markovian) fractional stochastic environment (for all values of the Hurst index ). We rigorously establish a first‐order approximation of the optimal value, when the return and volatility of the underlying asset are functions of a stationary slowly varying fractional Ornstein–Uhlenbeck process. We prove that this approximation can be also generated by a fixed zeroth‐ order trading strategy providing an explicit strategy which is asymptotically optimal in all admissible controls. Furthermore, we extend the discussion to general utility functions, and obtain the asymptotic optimality of this fixed strategy in a specific family of admissible strategies.  相似文献   

17.
  总被引:1,自引:1,他引:0  
In this paper we present some counterexamples to show that an uncritical application of the usual methods of continuous-time portfolio optimization can be misleading in the case of a stochastic opportunity set. Cases covered are problems with stochastic interest rates, stochastic volatility, and stochastic market price of risk. To classify the problems occurring with stochastic market coefficients, we further introduce two notions of stability of portfolio problems.  相似文献   

18.
    
We consider a modeling setup where the volatility index (VIX) dynamics are explicitly computable as a smooth transformation of a purely diffusive, multidimensional Markov process. The framework is general enough to embed many popular stochastic volatility models. We develop closed‐form expansions and sharp error bounds for VIX futures, options, and implied volatilities. In particular, we derive exact asymptotic results for VIX‐implied volatilities, and their sensitivities, in the joint limit of short time‐to‐maturity and small log‐moneyness. The expansions obtained are explicit based on elementary functions and they neatly uncover how the VIX skew depends on the specific choice of the volatility and the vol‐of‐vol processes. Our results are based on perturbation techniques applied to the infinitesimal generator of the underlying process. This methodology has previously been adopted to derive approximations of equity (SPX) options. However, the generalizations needed to cover the case of VIX options are by no means straightforward as the dynamics of the underlying VIX futures are not explicitly known. To illustrate the accuracy of our technique, we provide numerical implementations for a selection of model specifications.  相似文献   

19.
    
This paper studies stability of the exponential utility maximization when there are small variations on agent's utility function. Two settings are considered. First, in a general semimartingale model where random endowments are present, a sequence of utilities defined on converges to the exponential utility. Under a uniform condition on their marginal utilities, convergence of value functions, optimal payoffs, and optimal investment strategies are obtained, their rate of convergence is also determined. Stability of utility‐based pricing is studied as an application. Second, a sequence of utilities defined on converges to the exponential utility after shifting and scaling. Their associated optimal strategies, after appropriate scaling, converge to the optimal strategy for the exponential hedging problem. This complements Theorem 3.2 in [Nutz, M. (2012): Risk aversion asymptotics for power utility maximization. Probab. Theory & Relat. Fields 152, 703–749], which establishes the convergence for a sequence of power utilities.  相似文献   

20.
The observed discrepancies of derivative prices from their theoretical, arbitrage-free values are examined in the presence of transaction costs. Analytic upper and lower bounds on the reservation write and purchase prices, respectively, are obtained when an investor's preferences exhibit constant relative risk aversion between zero and one. The economy consists of multiple primary securities with stationary returns, a constant rate of interest, and any number of American or European derivatives with, possibly, path-dependent arbitrary payoffs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号