首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
    
This article discusses modelling strategies for repeated measurements of multiple response variables. Such data arise in the context of categorical variables where one can select more than one of the categories as the response. We consider each of the multiple responses as a binary outcome and use a marginal (or population‐averaged) modelling approach to analyse its means. Generalized estimating equations are used to account for different correlation structures, both over time and between items. We also discuss an alternative approach using a generalized linear mixed model with conditional interpretations. We illustrate the methods using data from a panel study in Australia called the Household, Income, and Labour Dynamics Survey.  相似文献   

2.
    
We propose a beta spatial linear mixed model with variable dispersion using Monte Carlo maximum likelihood. The proposed method is useful for those situations where the response variable is a rate or a proportion. An approach to the spatial generalized linear mixed models using the Box–Cox transformation in the precision model is presented. Thus, the parameter optimization process is developed for both the spatial mean model and the spatial variable dispersion model. All the parameters are estimated using Markov chain Monte Carlo maximum likelihood. Statistical inference over the parameters is performed using approximations obtained from the asymptotic normality of the maximum likelihood estimator. Diagnosis and prediction of a new observation are also developed. The method is illustrated with the analysis of one simulated case and two studies: clay and magnesium contents. In the clay study, 147 soil profile observations were taken from the research area of the Tropenbos Cameroon Programme, with explanatory variables: elevation in metres above sea level, agro‐ecological zone, reference soil group and land cover type. In the magnesium content, the soil samples were taken from 0‐ to 20‐cm‐depth layer at each of the 178 locations, and the response variable is related to the spatial locations, altitude and sub‐region.  相似文献   

3.
For modelling the effect of crossed, fixed factors on the response variable in balanced designs with nested stratifications, a generalized linear mixed model is proposed. This model is based on a set of quasi-likelihood assumptions which imply quadratic variance functions. From these variance functions, deviances are obtained to quantify the variation per stratification. The effects of the fixed factors will be tested, an dispersion components will be estimated. The practical use of the model is illustrated by reanalysing a soldering failures problem.  相似文献   

4.
    
Phylogenetic trees are types of networks that describe the temporal relationship between individuals, species, or other units that are subject to evolutionary diversification. Many phylogenetic trees are constructed from molecular data that is often only available for extant species, and hence they lack all or some of the branches that did not make it into the present. This feature makes inference on the diversification process challenging. For relatively simple diversification models, analytical or numerical methods to compute the likelihood exist, but these do not work for more realistic models in which the likelihood depends on properties of the missing lineages. In this article, we study a general class of species diversification models, and we provide an expectation-maximization framework in combination with a uniform sampling scheme to perform maximum likelihood estimation of the parameters of the diversification process.  相似文献   

5.
    
This paper develops formulae to compute the Fisher information matrix for the regression parameters of generalized linear models with Gaussian random effects. The Fisher information matrix relies on the estimation of the response variance under the model assumptions. We propose two approaches to estimate the response variance: the first is based on an analytic formula (or a Taylor expansion for cases where we cannot obtain the closed form), and the second is an empirical approximation using the model estimates via the expectation–maximization process. Further, simulations under several response distributions and a real data application involving a factorial experiment are presented and discussed. In terms of standard errors and coverage probabilities for model parameters, the proposed methods turn out to behave more reliably than does the ‘disparity rule’ or direct extraction of results from the generalized linear model fitted in the last expectation–maximization iteration.  相似文献   

6.
    
The construction of an importance density for partially non‐Gaussian state space models is crucial when simulation methods are used for likelihood evaluation, signal extraction, and forecasting. The method of efficient importance sampling is successful in this respect, but we show that it can be implemented in a computationally more efficient manner using standard Kalman filter and smoothing methods. Efficient importance sampling is generally applicable for a wide range of models, but it is typically a custom‐built procedure. For the class of partially non‐Gaussian state space models, we present a general method for efficient importance sampling. Our novel method makes the efficient importance sampling methodology more accessible because it does not require the computation of a (possibly) complicated density kernel that needs to be tracked for each time period. The new method is illustrated for a stochastic volatility model with a Student's t distribution.  相似文献   

7.
    
Typical data that arise from surveys, experiments, and observational studies include continuous and discrete variables. In this article, we study the interdependence among a mixed (continuous, count, ordered categorical, and binary) set of variables via graphical models. We propose an ?1‐penalized extended rank likelihood with an ascent Monte Carlo expectation maximization approach for the copula Gaussian graphical models and establish near conditional independence relations and zero elements of a precision matrix. In particular, we focus on high‐dimensional inference where the number of observations are in the same order or less than the number of variables under consideration. To illustrate how to infer networks for mixed variables through conditional independence, we consider two datasets: one in the area of sports and the other concerning breast cancer.  相似文献   

8.
    
Many statistical problems can be formulated as discrete missing data problems (MDPs). Examples include change-point problems, capture and recapture models, sample survey with non-response, zero-inflated Poisson models, medical screening/diagnostic tests and bioassay. This paper proposes an exact non-iterative sampling algorithm to obtain independently and identically distributed (i.i.d.) samples from posterior distribution in discrete MDPs. The new algorithm is essentially a conditional sampling, thus completely avoiding problems of convergence and slow convergence in iterative algorithms such as Markov chain Monte Carlo. Different from the general inverse Bayes formulae (IBF) sampler of Tan, Tian and Ng (Statistica Sinica, 13 , 2003, 625), the implementation of the new algorithm requires neither the expectation maximization nor the sampling importance resampling algorithms. The key idea is to first utilize the sampling-wise IBF to derive the conditional distribution of the missing data given the observed data, and then to draw i.i.d. samples from the complete-data posterior distribution. We first illustrate the method with a performing example and then apply the method to contingency tables with one supplemental margin for an human immunodeficiency virus study.  相似文献   

9.
    
Multidimensional network data can have different levels of complexity, as nodes may be characterized by heterogeneous individual-specific features, which may vary across the networks. This article introduces a class of models for multidimensional network data, where different levels of heterogeneity within and between networks can be considered. The proposed framework is developed in the family of latent space models, and it aims to distinguish symmetric relations between the nodes and node-specific features. Model parameters are estimated via a Markov Chain Monte Carlo algorithm. Simulated data and an application to a real example, on fruits import/export data, are used to illustrate and comment on the performance of the proposed models.  相似文献   

10.
We deal with general mixture of hierarchical models of the form m(x) = føf(x |θ) g (θ)dθ , where g(θ) and m(x) are called mixing and mixed or compound densities respectively, and θ is called the mixing parameter. The usual statistical application of these models emerges when we have data xi, i = 1,…,n with densities f(xii) for given θi, and the θ1 are independent with common density g(θ) . For a certain well known class of densities f(x |θ) , we present a sample-based approach to reconstruct g(θ) . We first provide theoretical results and then we use, in an empirical Bayes spirit, the first four moments of the data to estimate the first four moments of g(θ) . By using sampling techniques we proceed in a fully Bayesian fashion to obtain any posterior summaries of interest. Simulations which investigate the operating characteristics of our proposed methodology are presented. We illustrate our approach using data from mixed Poisson and mixed exponential densities.  相似文献   

11.
    
Adrian Smith joined The Alan Turing Institute as Institute Director and Chief Executive in September 2018. In May 2020, he was confirmed as President Elect of the Royal Society. He is also a member of the government's AI Council, which helps boost AI growth in the UK and promote its adoption and ethical use in businesses and organisations across the country. Professor Smith's previous role was Vice-Chancellor of the University of London where he was in post from 2012. He is a past President of the Royal Statistical Society and was elected a Fellow of the Royal Society in 2001 in recognition of his contribution to statistics. In 2003-04 Professor Smith undertook an inquiry into Post-14 Mathematics Education for the UK Secretary of State for Education and Skills and in 2017, on behalf of Her Majesty's Treasury and the Department for Education, published a 16-18 Maths Review. In 2006 he completed a report for the UK Home Secretary on the issue of public trust in Crime Statistics. He received a knighthood in the 2011 New Year Honours list. The following conversation took place at the Alan Turing Institute in London, on July 19 2019.  相似文献   

12.
In-depth data analysis plus statistical modeling can produce inferentialcausal models. Their creation thus combines aspects of analysis by close inspection,that is, reason analysis and cross-tabular analysis, with statistical analysis procedures,especially those that are special cases of the generalized linear model (McCullaghand Nelder, 1989; Agresti, 1996; Lindsey, 1997). This paper explores some of the roots of this combined method and suggests some new directions. An exercise clarifies some limitations of classic reason analysis by showing how the cross tabulation of variables with controls for test factors may produce better inferences. Then, given the cross tabulation of several variables, by explicating Coleman effect parameters, logistic regressions, and Poisson log-linear models, it shows how generalized linear models provide appropriate measures of effects and tests of statistical significance. Finally, to address a weakness of reason analysis, a case-control design is proposed and an example is developed.  相似文献   

13.
    
Bayesian modification indices are presented that provide information for the process of model evaluation and model modification. These indices can be used to investigate the improvement in a model if fixed parameters are re-specified as free parameters. The indices can be seen as a Bayesian analogue to the modification indices commonly used in a frequentist framework. The aim is to provide diagnostic information for multi-parameter models where the number of possible model violations and the related number of alternative models is too large to render estimation of each alternative practical. As an example, the method is applied to an item response theory (IRT) model, that is, to the two-parameter model. The method is used to investigate differential item functioning and violations of the assumption of local independence.  相似文献   

14.
15.
    
The purpose of this paper is to provide a critical discussion on real-time estimation of dynamic generalized linear models. We describe and contrast three estimation schemes, the first of which is based on conjugate analysis and linear Bayes methods, the second based on posterior mode estimation, and the third based on sequential Monte Carlo sampling methods, also known as particle filters. For the first scheme, we give a summary of inference components, such as prior/posterior and forecast densities, for the most common response distributions. Considering data of arrivals of tourists in Cyprus, we illustrate the Poisson model, providing a comparative analysis of the above three schemes.  相似文献   

16.
It is well known that the usual procedures for estimating panel data models are inconsistent in the dynamic setting. A large number of consistent estimators however, have been proposed in the literature. This paper provides a survey of the majority of mainstream estimators, which tend to consist of IV and GMM ones. It also considers a newly proposed extension to the promising Wansbeek–Bekker estimator (Harris & Mátyás, 2000). To provide guidance to the applied researcher working on micro-datasets, the small sample performance of these estimators is evaluated using a set of Monte Carlo experiments.  相似文献   

17.
Polytomous logistic regression   总被引:1,自引:0,他引:1  
In this paper a review will be given of some methods available for modelling relationships between categorical response variables and explanatory variables. These methods are all classed under the name polytomous logistic regression (PLR). Models for PLR will be presented and compared; model parameters will be tested and estimated by weighted least squares and by likelihood. Usually, software is needed for computation, and available statistical software is reported.
An industrial problem is solved to some extent as an example to illustrate the use of PLR. The paper is concluded by a discussion on the various PLR-methods and some topics that need a further study are mentioned.  相似文献   

18.
    
The paper estimates a large‐scale mixed‐frequency dynamic factor model for the euro area, using monthly series along with gross domestic product (GDP) and its main components, obtained from the quarterly national accounts (NA). The latter define broad measures of real economic activity (such as GDP and its decomposition by expenditure type and by branch of activity) that we are willing to include in the factor model, in order to improve its coverage of the economy and thus the representativeness of the factors. The main problem with their inclusion is not one of model consistency, but rather of data availability and timeliness, as the NA series are quarterly and are available with a large publication lag. Our model is a traditional dynamic factor model formulated at the monthly frequency in terms of the stationary representation of the variables, which however becomes nonlinear when the observational constraints are taken into account. These are of two kinds: nonlinear temporal aggregation constraints, due to the fact that the model is formulated in terms of the unobserved monthly logarithmic changes, but we observe only the sum of the monthly levels within a quarter, and nonlinear cross‐sectional constraints, since GDP and its main components are linked by the NA identities, but the series are expressed in chained volumes. The paper provides an exact treatment of the observational constraints and proposes iterative algorithms for estimating the parameters of the factor model and for signal extraction, thereby producing nowcasts of monthly GDP and its main components, as well as measures of their reliability.  相似文献   

19.
    
We present a modern perspective of the conditional likelihood approach to the analysis of capture‐recapture experiments, which shows the conditional likelihood to be a member of generalized linear model (GLM). Hence, there is the potential to apply the full range of GLM methodologies. To put this method in context, we first review some approaches to capture‐recapture experiments with heterogeneous capture probabilities in closed populations, covering parametric and non‐parametric mixture models and the use of covariates. We then review in more detail the analysis of capture‐recapture experiments when the capture probabilities depend on a covariate.  相似文献   

20.
  总被引:1,自引:0,他引:1  
This paper describes a multivariate Poisson mixture model for clustering supermarket shoppers based on their purchase frequency in a set of product categories. The multivariate nature of the model accounts for cross-selling effects between the purchases made in different product categories. However, for computational reasons, most multivariate approaches limit the covariance structure by including just one common interaction term, or by not including any covariance at all. Although this reduces the number of parameters significantly, it is often too simplistic as typically multiple interactions exist on different levels. This paper proposes a theoretically more complete variance/covariance structure of the multivariate Poisson model, based on domain knowledge or preliminary statistical analysis of significant purchase interaction effects in the data. Consequently, the model does not contain more parameters than necessary, whilst still accounting for the existing covariance in the data. Practically, retail category managers can use the model to devise customized merchandising strategies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号