共查询到14条相似文献,搜索用时 22 毫秒
1.
In this article, we propose a new identifiability condition by using the logarithmic calibration for the distortion measurement error models, where neither the response variable nor the covariates can be directly observed but are measured with multiplicative measurement errors. Under the logarithmic calibration, the direct-plug-in estimators of parameters and empirical likelihood based confidence intervals are proposed, and we studied the asymptotic properties of the proposed estimators. For the hypothesis testing of parameter, a restricted estimator under the null hypothesis and a test statistic are proposed. The asymptotic properties for the restricted estimator and test statistic are established. Simulation studies demonstrate the performance of the proposed procedure and a real example is analyzed to illustrate its practical usage. 相似文献
2.
This article is concerned with the inference on seemingly unrelated non‐parametric regression models with serially correlated errors. Based on an initial estimator of the mean functions, we first construct an efficient estimator of the autoregressive parameters of the errors. Then, by applying an undersmoothing technique, and taking both of the contemporaneous correlation among equations and serial correlation into account, we propose an efficient two‐stage local polynomial estimation for the unknown mean functions. It is shown that the resulting estimator has the same bias as those estimators which neglect the contemporaneous and/or serial correlation and smaller asymptotic variance. The asymptotic normality of the resulting estimator is also established. In addition, we develop a wild block bootstrap test for the goodness‐of‐fit of models. The finite sample performance of our procedures is investigated in a simulation study whose results come out very supportive, and a real data set is analysed to illustrate the usefulness of our procedures. 相似文献
3.
James Chipperfield 《Statistica Neerlandica》2020,74(2):96-111
Probabilistic record linkage is the act of bringing together records that are believed to belong to the same unit (e.g., person or business) from two or more files. It is a common way to enhance dimensions such as time and breadth or depth of detail. Probabilistic record linkage is not an error-free process and link records that do not belong to the same unit. Naively treating such a linked file as if it is linked without errors can lead to biased inferences. This paper develops a method of making inference with estimating equations when records are linked using algorithms that are widely used in practice. Previous methods for dealing with this problem cannot accommodate such linking algorithms. This paper develops a parametric bootstrap approach to inference in which each bootstrap replicate involves applying the said linking algorithm. This paper demonstrates the effectiveness of the method in simulations and in real applications. 相似文献
4.
This paper is concerned with the statistical inference on seemingly unrelated varying coefficient partially linear models. By combining the local polynomial and profile least squares techniques, and estimating the contemporaneous correlation, we propose a class of weighted profile least squares estimators (WPLSEs) for the parametric components. It is shown that the WPLSEs achieve the semiparametric efficiency bound and are asymptotically normal. For the non‐parametric components, by applying the undersmoothing technique, and taking the contemporaneous correlation into account, we propose an efficient local polynomial estimation. The resulting estimators are shown to have mean‐squared errors smaller than those estimators that neglect the contemporaneous correlation. In addition, a class of variable selection procedures is developed for simultaneously selecting significant variables and estimating unknown parameters, based on the non‐concave penalized and weighted profile least squares techniques. With a proper choice of regularization parameters and penalty functions, the proposed variable selection procedures perform as efficiently as if one knew the true submodels. The proposed methods are evaluated using wide simulation studies and applied to a set of real data. 相似文献
5.
Central limit theorems are developed for instrumental variables estimates of linear and semiparametric partly linear regression models for spatial data. General forms of spatial dependence and heterogeneity in explanatory variables and unobservable disturbances are permitted. We discuss estimation of the variance matrix, including estimates that are robust to disturbance heteroscedasticity and/or dependence. A Monte Carlo study of finite-sample performance is included. In an empirical example, the estimates and robust and non-robust standard errors are computed from Indian regional data, following tests for spatial correlation in disturbances, and nonparametric regression fitting. Some final comments discuss modifications and extensions. 相似文献
6.
We consider nonlinear heteroscedastic single‐index models where the mean function is a parametric nonlinear model and the variance function depends on a single‐index structure. We develop an efficient estimation method for the parameters in the mean function by using the weighted least squares estimation, and we propose a “delete‐one‐component” estimator for the single‐index in the variance function based on absolute residuals. Asymptotic results of estimators are also investigated. The estimation methods for the error distribution based on the classical empirical distribution function and an empirical likelihood method are discussed. The empirical likelihood method allows for incorporation of the assumptions on the error distribution into the estimation. Simulations illustrate the results, and a real chemical data set is analyzed to demonstrate the performance of the proposed estimators. 相似文献
7.
The Invariant Quadratic Estimators, the Maximum Likelihood Estimator (MLE) and Restricted Maximum Likelihood Estimator (REML) of variances in an orthogonal Finite Discrete Spectrum Linear Regression Model (FDSLRM) are derived and the problems of unbiasedness and consistency of these estimators are investigated.Acknowledgement. The research was supported by the grants 1/0272/03, 1/0264/03 and 2/4026/04 of the Slovak Scientific Grant Agency VEGA. 相似文献
8.
This paper deals with the issue of testing hypotheses in symmetric and log‐symmetric linear regression models in small and moderate‐sized samples. We focus on four tests, namely, the Wald, likelihood ratio, score, and gradient tests. These tests rely on asymptotic results and are unreliable when the sample size is not large enough to guarantee a good agreement between the exact distribution of the test statistic and the corresponding chi‐squared asymptotic distribution. Bartlett and Bartlett‐type corrections typically attenuate the size distortion of the tests. These corrections are available in the literature for the likelihood ratio and score tests in symmetric linear regression models. Here, we derive a Bartlett‐type correction for the gradient test. We show that the corrections are also valid for the log‐symmetric linear regression models. We numerically compare the various tests and bootstrapped tests, through simulations. Our results suggest that the corrected and bootstrapped tests exhibit type I probability error closer to the chosen nominal level with virtually no power loss. The analytically corrected tests as well as the bootstrapped tests, including the Bartlett‐corrected gradient test derived in this paper, perform with the advantage of not requiring computationally intensive calculations. We present a real data application to illustrate the usefulness of the modified tests. 相似文献
9.
H. Boscher 《Statistica Neerlandica》1991,45(1):9-19
The consequences of the omission of possibly contaminated observations in a linear regression model for the performance of the ordinary least squares ( LS- ) estimator are discussed. We compare the ordinary L Sestimator with the corresponding 'never pooled' LS -estimator with respect to the matrix-valued mean squared error. Necessary and sufficient conditions are derived for the superiority of an estimator to another one and tests are proposed to check these conditions. Finally the resulting preliminary-test-estimators are investigated. 相似文献
10.
This paper discusses regression analysis of failure time data under the additive hazards model, with covariates subject to measurement errors. In particular, we consider the situation where there may exist only repeated measurements or observations on the covariates with measurement errors, and for which there does not exist any method for inference. A nonparametric-correction approach is proposed for inference about regression parameters and the baseline cumulative hazards function. Both asymptotic and finite sample properties of the proposed estimators are established and the approach is applied to an AIDS clinical trial that motivated this study. 相似文献
11.
Razzaghi (1987) examined the difference of covariance matrices of competing estimators in misspecified restricted linear models. Further, Gross, Trenkler and Liski (1998) extended Razzaghi's result by asserting his sufficient condition for nonnegative definiteness of the covariance matrix difference to be also necessary. In this paper, when the covariance matrix of the disturbance vector is nonnegative definite, the necessary and sufficient conditions for nonnegative definiteness of the covariance matrix difference are derived. So above results are strengthened. Received: February 1999 相似文献
12.
Consider a linear regression model and suppose that our aim is to find a confidence interval for a specified linear combination of the regression parameters. In practice, it is common to perform a Durbin–Watson pretest of the null hypothesis of zero first‐order autocorrelation of the random errors against the alternative hypothesis of positive first‐order autocorrelation. If this null hypothesis is accepted then the confidence interval centered on the ordinary least squares estimator is used; otherwise the confidence interval centered on the feasible generalized least squares estimator is used. For any given design matrix and parameter of interest, we compare the confidence interval resulting from this two‐stage procedure and the confidence interval that is always centered on the feasible generalized least squares estimator, as follows. First, we compare the coverage probability functions of these confidence intervals. Second, we compute the scaled expected length of the confidence interval resulting from the two‐stage procedure, where the scaling is with respect to the expected length of the confidence interval centered on the feasible generalized least squares estimator, with the same minimum coverage probability. These comparisons are used to choose the better confidence interval, prior to any examination of the observed response vector. 相似文献
13.
We demonstrate that despite the common worry about the possible correlations between the unobserved individual effects and the explanatory variables in panel data models the likelihood approach can provide a unified framework towards the study of the identification of a panel data model subject to measurement errors. In fact, it can also serve as a basis for deriving efficient estimation methods. 相似文献
14.
Timothy J. Vogelsang 《Journal of econometrics》2012,166(2):303-319
This paper develops an asymptotic theory for test statistics in linear panel models that are robust to heteroskedasticity, autocorrelation and/or spatial correlation. Two classes of standard errors are analyzed. Both are based on nonparametric heteroskedasticity autocorrelation (HAC) covariance matrix estimators. The first class is based on averages of HAC estimators across individuals in the cross-section, i.e. “averages of HACs”. This class includes the well known cluster standard errors analyzed by Arellano (1987) as a special case. The second class is based on the HAC of cross-section averages and was proposed by Driscoll and Kraay (1998). The ”HAC of averages” standard errors are robust to heteroskedasticity, serial correlation and spatial correlation but weak dependence in the time dimension is required. The “averages of HACs” standard errors are robust to heteroskedasticity and serial correlation including the nonstationary case but they are not valid in the presence of spatial correlation. The main contribution of the paper is to develop a fixed-b asymptotic theory for statistics based on both classes of standard errors in models with individual and possibly time fixed-effects dummy variables. The asymptotics is carried out for large time sample sizes for both fixed and large cross-section sample sizes. Extensive simulations show that the fixed-b approximation is usually much better than the traditional normal or chi-square approximation especially for the Driscoll-Kraay standard errors. The use of fixed-b critical values will lead to more reliable inference in practice especially for tests of joint hypotheses. 相似文献