首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
    
In a companion paper, we studied a control problem related to swing option pricing in a general non‐Markovian setting. The main result there shows that the value process of this control problem can uniquely be characterized in terms of a first‐order backward stochastic partial differential equation (BSPDE) and a pathwise differential inclusion. In this paper, we additionally assume that the cash flow process of the swing option is left‐continuous in expectation. Under this assumption, we show that the value process is continuously differentiable in the space variable that represents the volume in which the holder of the option can still exercise until maturity. This gives rise to an existence and uniqueness result for the corresponding BSPDE in a classical sense. We also explicitly represent the space derivative of the value process in terms of a nonstandard optimal stopping problem over a subset of predictable stopping times. This representation can be applied to derive a dual minimization problem in terms of martingales.  相似文献   

2.
OPTIMAL MULTIPLE STOPPING AND VALUATION OF SWING OPTIONS   总被引:1,自引:0,他引:1  
The connection between optimal stopping of random systems and the theory of the Snell envelop is well understood, and its application to the pricing of American contingent claims is well known. Motivated by the pricing of swing contracts (whose recall components can be viewed as contingent claims with multiple exercises of American type) we investigate the mathematical generalization of these results to the case of possible multiple stopping. We prove existence of the multiple exercise policies in a fairly general set-up. We then concentrate on the Black–Scholes model for which we give a constructive solution in the perpetual case, and an approximation procedure in the finite horizon case. The last two sections of the paper are devoted to numerical results. We illustrate the theoretical results of the perpetual case, and in the finite horizon case, we introduce numerical approximation algorithms based on ideas of the Malliavin calculus.  相似文献   

3.
MONTE CARLO METHODS FOR THE VALUATION OF MULTIPLE-EXERCISE OPTIONS   总被引:1,自引:0,他引:1  
We discuss Monte Carlo methods for valuing options with multiple-exercise features in discrete time. By extending the recently developed duality ideas for American option pricing, we show how to obtain estimates on the prices of such options using Monte Carlo techniques. We prove convergence of our approach and estimate the error. The methods are applied to options in the energy and interest rate derivative markets.  相似文献   

4.
This paper introduces the application of Monte Carlo simulation technology to the valuation of securities that contain many (buying or selling) rights, but for which a limited number can be exercised per period, and penalties if a minimum quantity is not exercised before maturity. These securities combine the characteristics of American options, with the additional constraint that only a few rights can be exercised per period and therefore their price depends also on the number of living rights (i.e., American-Asian-style payoffs), and forward securities. These securities give flexibility-of-delivery options and are common in energy markets (e.g., take-or-pay or swing options) and as real options (e.g., the development of a mine). First, we derive a series of properties for the price and the optimal exercise frontier of these securities. Second, we price them by simulation, extending the Ibáñez and Zapatero (2004) method to this problem.  相似文献   

5.
    
The classical literature on optimal liquidation, rooted in Almgren–Chriss models, tackles the optimal liquidation problem using a trade‐off between market impact and price risk. It answers the general question of optimal scheduling but the very question of the actual way to proceed with liquidation is rarely dealt with. Our model, which incorporates both price risk and nonexecution risk, is an attempt to tackle this question using limit orders. The very general framework we propose to model liquidation with limit orders generalizes existing ones in two ways. We consider a risk‐averse agent, whereas the model of Bayraktar and Ludkovski only tackles the case of a risk‐neutral one. We consider very general functional forms for the execution process intensity, whereas Guéant, Lehalle and Fernandez‐Tapia are restricted to exponential intensity. Eventually, we link the execution cost function of Almgren–Chriss models to the intensity function in our model, providing then a way to see Almgren–Chriss models as a limit of ours.  相似文献   

6.
7.
    
In this paper, we consider Asian options with counterparty risk under stochastic volatility models. We propose a simple way to construct stochastic volatility models through the market factor channel. In the proposed framework, we obtain an explicit pricing formula of Asian options with counterparty risk and illustrate the effects of systematic risk on Asian option prices. Specially, the U-shaped and inverted U-shaped curves appear when we keep the total risk of the underlying asset and the issuer's assets unchanged, respectively.  相似文献   

8.
    
I consider an optimal consumption/investment problem to maximize expected utility from consumption. In this market model, the investor is allowed to choose a portfolio that consists of one bond, one liquid risky asset (no transaction costs), and one illiquid risky asset (proportional transaction costs). I fully characterize the optimal consumption and trading strategies in terms of the solution of the free boundary ordinary differential equation (ODE) with an integral constraint. I find an explicit characterization of model parameters for the well‐posedness of the problem, and show that the problem is well posed if and only if there exists a shadow price process. Finally, I describe how the investor's optimal strategy is affected by the additional opportunity of trading the liquid risky asset, compared to the simpler model with one bond and one illiquid risky asset.  相似文献   

9.
In this paper, we examine and compare the performance of a variety of continuous‐time volatility models in their ability to capture the behavior of the VIX. The “3/2‐ model” with a diffusion structure which allows the volatility of volatility changes to be highly sensitive to the actual level of volatility is found to outperform all other popular models tested. Analytic solutions for option prices on the VIX under the 3/2‐model are developed and then used to calibrate at‐the‐money market option prices.  相似文献   

10.
    
This paper considers the pricing and hedging of a call option when liquidity matters, that is, either for a large nominal or for an illiquid underlying asset. In practice, as opposed to the classical assumptions of a price‐taking agent in a frictionless market, traders cannot be perfectly hedged because of execution costs and market impact. They indeed face a trade‐off between hedging errors and costs that can be solved by using stochastic optimal control. Our modeling framework, which is inspired by the recent literature on optimal execution, makes it possible to account for both execution costs and the lasting market impact of trades. Prices are obtained through the indifference pricing approach. Numerical examples are provided, along with comparisons to standard methods.  相似文献   

11.
    
This paper considers a non‐Markov control problem arising in a financial market where asset returns depend on hidden factors. The problem is non‐Markov because nonlinear filtering is required to make inference on these factors, and hence the associated dynamic program effectively takes the filtering distribution as one of its state variables. This is of significant difficulty because the filtering distribution is a stochastic probability measure of infinite dimension, and therefore the dynamic program has a state that cannot be differentiated in the traditional sense. This lack of differentiability means that the problem cannot be solved using a Hamilton–Jacobi–Bellman equation. This paper will show how the problem can be analyzed and solved using backward stochastic differential equations, with a key tool being the problem's dual formulation.  相似文献   

12.
    
We consider the problem of finding optimal exercise policies for American options, both under constant and stochastic volatility settings. Rather than work with the usual equations that characterize the price exclusively, we derive and use boundary evolution equations that characterize the evolution of the optimal exercise boundary. Using these boundary evolution equations we show how one can construct very efficient computational methods for pricing American options that avoid common sources of error. First, we detail a methodology for standard static grids and then describe an improvement that defines a grid that evolves dynamically while solving the problem. When integral representations are available, as in the Black–Scholes setting, we also describe a modified integral method that leverages on the representation to solve the boundary evolution equations. Finally we compare runtime and accuracy to other popular numerical methods. The ideas and methodology presented herein can easily be extended to other optimal stopping problems.  相似文献   

13.
    
This paper introduces a dual problem to study a continuous‐time consumption and investment problem with incomplete markets and Epstein–Zin stochastic differential utilities. Duality between the primal and dual problems is established. Consequently, the optimal strategy of this consumption and investment problem is identified without assuming several technical conditions on market models, utility specifications, and agent's admissible strategies. Meanwhile, the minimizer of the dual problem is identified as the utility gradient of the primal value and is economically interpreted as the “least favorable” completion of the market.  相似文献   

14.
    
We consider the problem of valuation of American options written on dividend‐paying assets whose price dynamics follow a multidimensional exponential Lévy model. We carefully examine the relation between the option prices, related partial integro‐differential variational inequalities, and reflected backward stochastic differential equations. In particular, we prove regularity results for the value function and obtain the early exercise premium formula for a broad class of payoff functions.  相似文献   

15.
    
We formulate and solve a multi-player stochastic differential game between financial agents who seek to cost-efficiently liquidate their position in a risky asset in the presence of jointly aggregated transient price impact, along with taking into account a common general price predicting signal. The unique Nash-equilibrium strategies reveal how each agent's liquidation policy adjusts the predictive trading signal to the aggregated transient price impact induced by all other agents. This unfolds a quantitative relation between trading signals and the order flow in crowded markets. We also formulate and solve the corresponding mean field game in the limit of infinitely many agents. We prove that the equilibrium trading speed and the value function of an agent in the finite N-player game converges to the corresponding trading speed and value function in the mean field game at rate O ( N 2 ) $O(N^{-2})$ . In addition, we prove that the mean field optimal strategy provides an approximate Nash-equilibrium for the finite-player game.  相似文献   

16.
PORTFOLIO OPTIMIZATION WITH JUMPS AND UNOBSERVABLE INTENSITY PROCESS   总被引:2,自引:0,他引:2  
We consider a financial market with one bond and one stock. The dynamics of the stock price process allow jumps which occur according to a Markov-modulated Poisson process. We assume that there is an investor who is only able to observe the stock price process and not the driving Markov chain. The investor's aim is to maximize the expected utility of terminal wealth. Using a classical result from filter theory it is possible to reduce this problem with partial observation to one with complete observation. With the help of a generalized Hamilton–Jacobi–Bellman equation where we replace the derivative by Clarke's generalized gradient, we identify an optimal portfolio strategy. Finally, we discuss some special cases of this model and prove several properties of the optimal portfolio strategy. In particular, we derive bounds and discuss the influence of uncertainty on the optimal portfolio strategy.  相似文献   

17.
ALTERNATIVE CHARACTERIZATIONS OF AMERICAN PUT OPTIONS   总被引:6,自引:0,他引:6  
We derive alternative representations of the McKean equation for the value of the American put option. Our main result decomposes the value of an American put option into the corresponding European put price and the early exercise premium. We then represent the European put price in a new manner. This representation allows us to alternatively decompose the price of an American put option into its intrinsic value and time value, and to demonstrate the equivalence of our results to the McKean equation.  相似文献   

18.
We model the term-structure modeling of interest rates by considering the forward rate as the solution of a stochastic hyperbolic partial differential equation. First, we study the arbitrage-free model of the term structure and explore the completeness of the market. We then derive results for the pricing of general contingent claims. Finally we obtain an explicit formula for a forward rate cap in the Gaussian framework from the general results.  相似文献   

19.
    
We study the optimal execution problem with multiplicative price impact in algorithmic trading, when an agent holds an initial position of shares of a financial asset. The interselling decision times are modeled by the arrival times of a Poisson process. The criterion to be optimized consists in maximizing the expected net present value of the gains of the agent, and it is proved that an optimal strategy has a barrier form, depending only on the number of shares left and the level of the asset price.  相似文献   

20.
    
In dealer markets, dealers provide prices at which they agree to buy and sell the assets and securities they have in their scope. With ever increasing trading volume, this quoting task has to be done algorithmically in most markets such as foreign exchange (FX) markets or corporate bond markets. Over the last 10 years, many mathematical models have been designed that can be the basis of quoting algorithms in dealer markets. Nevertheless, in most (if not all) models, the dealer is a pure internalizer, setting quotes and waiting for clients. However, on many dealer markets, dealers also have access to an interdealer market or even public trading venues where they can hedge part of their inventory. In this paper, we propose a model taking this possibility into account therefore allowing dealers to externalize part of their risk. The model displays an important feature well known to practitioners that within a certain inventory range, the dealer internalizes the flow by appropriately adjusting the quotes and starts externalizing outside of that range. The larger the franchise, the wider is the inventory range suitable for pure internalization. The model is illustrated numerically with realistic parameters for USDCNH spot market.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号