共查询到8条相似文献,搜索用时 0 毫秒
1.
In this paper, quadratic term structure models (QTSMs) are analyzed and characterized in a general Markovian setting. The primary motivation for this work is to find a useful extension of the traditional QTSM, which is based on an Ornstein–Uhlenbeck (OU) state process, while maintaining the analytical tractability of the model. To accomplish this, the class of quadratic processes, consisting of those Markov state processes that yield QTSM, is introduced. The main result states that OU processes are the only conservative quadratic processes. In general, however, a quadratic potential can be added to allow QTSMs to model default risk. It is further shown that the exponent functions that are inherent in the definition of the quadratic property can be determined by a system of Riccati equations with a unique admissible parameter set. The implications of these results for modeling the term structure of risk-free and defaultable rates are discussed. 相似文献
2.
We present an alternative approach to the pricing of bonds and bond derivatives in a multivariate factor model for the term structure of interest rates that is based on the solution of an optimal stochastic control problem. It can also be seen as an alternative to the classical approach of computing forward prices by forward measures and as such can be extended to other situations where traditionally a change of measure is involved based on a change of numeraire. We finally provide explicit formulas for the computation of bond options in a bivariate linear‐quadratic factor model. 相似文献
3.
THE TERM STRUCTURE OF INTEREST RATES AS A GAUSSIAN RANDOM FIELD 总被引:7,自引:0,他引:7
D. P. Kennedy 《Mathematical Finance》1994,4(3):247-258
A simple model of the term structure of interest rates is introduced in which the family of instantaneous forward rates evolves as a continuous Gaussian random field. A necessary and sufficient condition for the associated family of discounted zero-coupon bond prices to be martingales is given, permitting the consistent pricing of interest rate contingent claims. Examples of the pricing of interest-rate caps and the situation when the Gaussian random field may be viewed as a deterministic time change of the standard Brownian sheet are discussed. 相似文献
4.
For general volatility structures for forward rates, the evolution of interest rates may not be Markovian and the entire path may be necessary to capture the dynamics of the term structure. This article identifies conditions on the volatility structure of forward rates that permit the dynamics of the term structure to be represented by a two-dimensional state variable Markov process. the permissible set of volatility structures that accomplishes this goal is shown to be quite large and includes many stochastic structures. In general, analytical characterization of the terminal distributions of the two state variables is unlikely, and numerical procedures are required to value claims. Efficient simulation algorithms using control variates are developed to price claims against the term structure. 相似文献
5.
This paper derives domain restrictions on interest rates implied by no‐arbitrage. These restrictions are important for the study of arbitrage opportunities on bond markets, for regulation of these markets, and for econometric modelling. 相似文献
6.
The extended Cox-Ingersoll-Ross (ECIR) models of interest rates allow for time-dependent parameters in the CIR square-root model. This article presents closed-form pathwise unique solutions of these unsolved stochastic differential equations (s.d.e.s) in terms of functionals of their driving Brownian motion and parameters. It is shown that quadratics in solution of linear s.d.e.s solve the ECIR model if and only if the dimension of the model is a positive integer and that this solution can be achieved by construction of a pathwise unique generalized Ornstein-Uhlenbeck process from the ECIR Brownian motion. For real valued dimensions an extension of the time-change theorem of Dubins and Schwarz (1965) is presented and applied to show that a lognormal process solves the model through a stochastic time change. Pathwise equivalence to a rescaled time-changed Bessel square process is also established. These novel results are applied to characterize zero-hitting time and to produce transition density and zero-hitting conditions for the ECIR spot rate. the CIR term structure is then extended to ECIR under no arbitrage, and its solutions and the transition density are represented under a new ECIR martingale measure. the findings are employed to derive a closed-form ECIR bond option valuation formula which generalizes that obtained by CIR (1985). 相似文献
7.
In this paper we use the Cox, Ingersoll, and Ross (1985b) single-factor, term structure model and extend it to the pricing of American default-free bond puts. We provide a quasi-analytical formula for these option prices based on recently established mathematical results for Bessel bridges, coupled with the optimal stopping time method. We extend our results to another interest rate contingent claim and provide a quasi-analytical solution for American yield option prices which illustrates the flexibility of our framework. 相似文献
8.
EFFICIENT PRICING OF BARRIER OPTIONS AND CREDIT DEFAULT SWAPS IN LÉVY MODELS WITH STOCHASTIC INTEREST RATE 下载免费PDF全文
Recently, advantages of conformal deformations of the contours of integration in pricing formulas for European options have been demonstrated in the context of wide classes of Lévy models, the Heston model, and other affine models. Similar deformations were used in one‐factor Lévy models to price options with barrier and lookback features and credit default swaps (CDSs). In the present paper, we generalize this approach to models, where the dynamics of the assets is modeled as , where X is a Lévy process, and the interest rate is stochastic. Assuming that X and r are independent, and , the infinitesimal generator of the pricing semigroup in the model for the short rate, satisfies weak regularity conditions, which hold for popular models of the short rate, we develop a variation of the pricing procedure for Lévy models which is almost as fast as in the case of the constant interest rate. Numerical examples show that about 0.15 second suffices to calculate prices of 8 options of same maturity in a two‐factor model with the error tolerance and less; in a three‐factor model, accuracy of order 0.001–0.005 is achieved in about 0.2 second. Similar results are obtained for quanto CDS, where an additional stochastic factor is the exchange rate. We suggest a class of Lévy models with the stochastic interest rate driven by 1–3 factors, which allows for fast calculations. This class can satisfy the current regulatory requirements for banks mandating sufficiently sophisticated credit risk models. 相似文献