首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Maximum likelihood estimation can be consistent and asymptotically normal despite serial correlation in the residuals. The usual estimator of the asymptotic covariance of the parameter estimator is inconsistent, but an alternative consistent estimator is derived.  相似文献   

2.
A local maximum likelihood estimator based on Poisson regression is presented as well as its bias, variance and asymptotic distribution. This semiparametric estimator is intended to be an alternative to the Poisson, negative binomial and zero-inflated Poisson regression models that does not depend on regularity conditions and model specification accuracy. Some simulation results are presented. The use of the local maximum likelihood procedure is illustrated on one example from the literature. This procedure is found to perform well. This research was partially supported by Calouste Gulbenkian Foundation and PRODEP III.  相似文献   

3.
W. Stadje 《Metrika》1988,35(1):93-97
LetP be a probability measure on ℝ andI x be the set of alln-dimensional rectangles containingx. If for allx ∈ ℝn and θ ∈ ℝ the inequality holds,P is a normal distributioin with mean 0 or the unit mass at 0. The result generalizes Teicher’s (1961) maximum likelihood characterization of the normal density to a characterization ofN(0, σ2) amongall distributions (including those without density). The m.l. principle used is that of Scholz (1980).  相似文献   

4.
This paper proposes a new approach to handle nonparametric stochastic frontier (SF) models. It is based on local maximum likelihood techniques. The model is presented as encompassing some anchorage parametric model in a nonparametric way. First, we derive asymptotic properties of the estimator for the general case (local linear approximations). Then the results are tailored to a SF model where the convoluted error term (efficiency plus noise) is the sum of a half normal and a normal random variable. The parametric anchorage model is a linear production function with a homoscedastic error term. The local approximation is linear for both the production function and the parameters of the error terms. The performance of our estimator is then established in finite samples using simulated data sets as well as with a cross-sectional data on US commercial banks. The methods appear to be robust, numerically stable and particularly useful for investigating a production process and the derived efficiency scores.  相似文献   

5.
We extend PML theory to account for information on the conditional moments up to order four, but without assuming a parametric model, to avoid a risk of misspecification of the conditional distribution. The key statistical tool is the quartic exponential family, which allows us to generalize the PML2 and QGPML1 methods proposed in Gourieroux et al. (1984) to PML4 and QGPML2 methods, respectively. An asymptotic theory is developed. The key numerical tool that we use is the Gauss-Freud integration scheme that solves a computational problem that has previously been raised in several fields. Simulation exercises demonstrate the feasibility and robustness of the methods.  相似文献   

6.
7.
This paper develops a pure simulation-based approach for computing maximum likelihood estimates in latent state variable models using Markov Chain Monte Carlo methods (MCMC). Our MCMC algorithm simultaneously evaluates and optimizes the likelihood function without resorting to gradient methods. The approach relies on data augmentation, with insights similar to simulated annealing and evolutionary Monte Carlo algorithms. We prove a limit theorem in the degree of data augmentation and use this to provide standard errors and convergence diagnostics. The resulting estimator inherits the sampling asymptotic properties of maximum likelihood. We demonstrate the approach on two latent state models central to financial econometrics: a stochastic volatility and a multivariate jump-diffusion models. We find that convergence to the MLE is fast, requiring only a small degree of augmentation.  相似文献   

8.
For a balanced two-way mixed model, the maximum likelihood (ML) and restricted ML (REML) estimators of the variance components were obtained and compared under the non-negativity requirements of the variance components by L ee and K apadia (1984). In this note, for a mixed (random blocks) incomplete block model, explicit forms for the REML estimators of variance components are obtained. They are always non-negative and have smaller mean squared error (MSE) than the analysis of variance (AOV) estimators. The asymptotic sampling variances of the maximum likelihood (ML) estimators and the REML estimators are compared and the balanced incomplete block design (BIBD) is considered as a special case. The ML estimators are shown to have smaller asymptotic variances than the REML estimators, but a numerical result in the randomized complete block design (RCBD) demonstrated that the performances of the REML and ML estimators are not much different in the MSE sense.  相似文献   

9.
This paper analyzes spatial Probit models for cross sectional dependent data in a binary choice context. Observations are divided by pairwise groups and bivariate normal distributions are specified within each group. Partial maximum likelihood estimators are introduced and they are shown to be consistent and asymptotically normal under some regularity conditions. Consistent covariance matrix estimators are also provided. Estimates of average partial effects can also be obtained once we characterize the conditional distribution of the latent error. Finally, a simulation study shows the advantages of our new estimation procedure in this setting. Our proposed partial maximum likelihood estimators are shown to be more efficient than the generalized method of moments counterparts.  相似文献   

10.
This paper presents a consistent estimator of a censored linear regression model which does not require knowledge of the distribution of the error term. The estimator considered here applies Duncan's (1982) suggestion that the likelihood function for the censored regression model be treated as a functional of both the unknown regression vector and the unknown error distribution. Our estimator is the majorizing regression vector for this non-parametric likelihood functional. We find conditions which ensure the consistency of the NPMLE. The paper concludes with the results of Monte Carlo experiments which show the NPMLE to be more efficient than Powell's Least Absolute Deviations (LAD) estimator, particularly when the fraction of censored observations is large and the sample size is small.  相似文献   

11.
First difference maximum likelihood (FDML) seems an attractive estimation methodology in dynamic panel data modeling because differencing eliminates fixed effects and, in the case of a unit root, differencing transforms the data to stationarity, thereby addressing both incidental parameter problems and the possible effects of nonstationarity. This paper draws attention to certain pathologies that arise in the use of FDML that have gone unnoticed in the literature and that affect both finite sample performance and asymptotics. FDML uses the Gaussian likelihood function for first differenced data and parameter estimation is based on the whole domain over which the log-likelihood is defined. However, extending the domain of the likelihood beyond the stationary region has certain consequences that have a major effect on finite sample and asymptotic performance. First, the extended likelihood is not the true likelihood even in the Gaussian case and it has a finite upper bound of definition. Second, it is often bimodal, and one of its peaks can be so peculiar that numerical maximization of the extended likelihood frequently fails to locate the global maximum. As a result of these pathologies, the FDML estimator is a restricted estimator, numerical implementation is not straightforward and asymptotics are hard to derive in cases where the peculiarity occurs with non-negligible probabilities. The peculiarities in the likelihood are found to be particularly marked in time series with a unit root. In this case, the asymptotic distribution of the FDMLE has bounded support and its density is infinite at the upper bound when the time series sample size T→∞T. As the panel width n→∞n the pathology is removed and the limit theory is normal. This result applies even for TT fixed and we present an expression for the asymptotic distribution which does not depend on the time dimension. We also show how this limit theory depends on the form of the extended likelihood.  相似文献   

12.
The restricted maximum likelihood is preferred by many to the full maximum likelihood for estimation with variance component and other random coefficient models, because the variance estimator is unbiased. It is shown that this unbiasedness is accompanied in some balanced designs by an inflation of the mean squared error. An estimator of the cluster‐level variance that is uniformly more efficient than the full maximum likelihood is derived. Estimators of the variance ratio are also studied.  相似文献   

13.
We study the time-stationarity of rating transitions, modelled by a time-continuous discrete-state Markov process and derive a likelihood ratio test. For multiple Markov processes from a multiplicative intensity model, maximum likelihood parameter estimates can be written as martingale transform of the processes, counting transitions between the rating states, so that the profile partial likelihood ratio is asymptotically χ2χ2-distributed. An application to an internal rating data set reveals highly significant instationarity.  相似文献   

14.
The iterative algorithm suggested by Greene (1982) for the estimation of stochastic frontier production models does not necessarily solve the likelihood equations. Corrected iterative algorithms which generalize Fair's method (1977) and solve the likelihood equations are derived. These algorithms are compared with the Newton method in an empirical case. The Newton method is more time saving than these algorithms.  相似文献   

15.
This paper proposes a general computational framework for empirical estimation of financial agent-based models, for which criterion functions have unknown analytical form. For this purpose, we adapt a recently developed nonparametric simulated maximum likelihood estimation based on kernel methods. In combination with the model developed by Brock and Hommes (1998), which is one of the most widely analysed heterogeneous agent models in the literature, we extensively test the properties and behaviour of the estimation framework, as well as its ability to recover parameters consistently and efficiently using simulations. Key empirical findings indicate the statistical insignificance of the switching coefficient but markedly significant belief parameters that define heterogeneous trading regimes with a predominance of trend following over contrarian strategies. In addition, we document a slight proportional dominance of fundamentalists over trend-following chartists in major world markets.  相似文献   

16.
We propose an easy-to-implement simulated maximum likelihood estimator for dynamic models where no closed-form representation of the likelihood function is available. Our method can handle any simulable model without latent dynamics. Using simulated observations, we nonparametrically estimate the unknown density by kernel methods, and then construct a likelihood function that can be maximized. We prove that this nonparametric simulated maximum likelihood (NPSML) estimator is consistent and asymptotically efficient. The higher-order impact of simulations and kernel smoothing on the resulting estimator is also analyzed; in particular, it is shown that the NPSML does not suffer from the usual curse of dimensionality associated with kernel estimators. A simulation study shows good performance of the method when employed in the estimation of jump-diffusion models.  相似文献   

17.
Panel logit models have proved to be simple and effective tools to build early warning systems (ews) for financial crises. But because crises are rare events, the estimation of ews does not usually account for country-specific fixed effects, so as to avoid losing all the information relative to countries that never face a crisis. I propose using a penalized maximum likelihood estimator for fixed-effects logit-based ews where all the observations are retained. I show that including country effects, while preserving the entire sample, improves the predictive performance of ews, both in simulation and out of sample, with respect to the pooled, random-effects and standard fixed-effects models.  相似文献   

18.
This work describes a Gaussian Markov random field model that includes several previously proposed models, and studies properties of its maximum likelihood (ML) and restricted maximum likelihood (REML) estimators in a special case. Specifically, for models where a particular relation holds between the regression and precision matrices of the model, we provide sufficient conditions for existence and uniqueness of ML and REML estimators of the covariance parameters, and provide a straightforward way to compute them. It is found that the ML estimator always exists while the REML estimator may not exist with positive probability. A numerical comparison suggests that for this model ML estimators of covariance parameters have, overall, better frequentist properties than REML estimators.  相似文献   

19.
Quasi maximum likelihood estimation and inference in multivariate volatility models remains a challenging computational task if, for example, the dimension of the parameter space is high. One of the reasons is that typically numerical procedures are used to compute the score and the Hessian, and often they are numerically unstable. We provide analytical formulae for the score and the Hessian for a variety of multivariate GARCH models including the Vec and BEKK specifications as well as the recent dynamic conditional correlation model. By means of a Monte Carlo investigation of the BEKK–GARCH model we illustrate that employing analytical derivatives for inference is clearly preferable to numerical methods.  相似文献   

20.
In Fortiana and Grané (J Stat Plann Infer 108:85–97), we study a scale-free statistic, based on Hoeffding’s maximum correlation, for testing exponentiality. This statistic admits an expansion along a countable set of orthogonal axes, originating a sequence of statistics. Linear combinations of a given number p of terms in this sequence can be written as a quotient of L-statistics. In this paper, we propose a scale-free adaptive statistic for testing exponentiality with optimal power against a specific alternative and obtain its exact distribution. An empirical power study shows that the test based on this new statistic has the same level of performance than the best tests in the statistical literature.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号