首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Quasi maximum likelihood estimation and inference in multivariate volatility models remains a challenging computational task if, for example, the dimension of the parameter space is high. One of the reasons is that typically numerical procedures are used to compute the score and the Hessian, and often they are numerically unstable. We provide analytical formulae for the score and the Hessian for a variety of multivariate GARCH models including the Vec and BEKK specifications as well as the recent dynamic conditional correlation model. By means of a Monte Carlo investigation of the BEKK–GARCH model we illustrate that employing analytical derivatives for inference is clearly preferable to numerical methods.  相似文献   

2.
    
Volatility models have been playing important roles in economics and finance. Using a generalized spectral second order derivative approach, we propose a new class of generally applicable omnibus tests for the adequacy of linear and nonlinear volatility models. Our tests have a convenient asymptotic null N(0,1) distribution, and can detect a wide range of misspecifications for volatility dynamics, including both neglected linear and nonlinear volatility dynamics. Distinct from the existing diagnostic tests for volatility models, our tests are robust to time-varying higher order moments of unknown form (e.g., time-varying skewness and kurtosis). They check a large number of lags and are therefore expected to be powerful against neglected volatility dynamics that occurs at higher order lags or display long memory properties. Despite using a large number of lags, our tests do not suffer much from the loss of a large number of degrees of freedom, because our approach naturally discounts higher order lags, which is consistent with the stylized fact that economic or financial markets are affected more by the recent past events than by the remote past events. No specific estimation method is required, and parameter estimation uncertainty has no impact on the convenient limit N(0,1) distribution of the test statistics. Moreover, there is no need to formulate an alternative volatility model, and only estimated standardized residuals are needed to implement our tests. We do not have to calculate tedious and model-specific score functions or derivatives of volatility models with respect to estimated parameters, which are required in some existing popular diagnostic tests for volatility models. We examine the finite sample performance of the proposed tests. It is documented that the new tests are rather powerful in detecting neglected nonlinear volatility dynamics which the existing tests can easily miss. They are useful diagnostic tools for practitioners when modelling volatility dynamics.  相似文献   

3.
This survey reviews the existing literature on the most relevant Bayesian inference methods for univariate and multivariate GARCH models. The advantages and drawbacks of each procedure are outlined as well as the advantages of the Bayesian approach versus classical procedures. The paper makes emphasis on recent Bayesian non‐parametric approaches for GARCH models that avoid imposing arbitrary parametric distributional assumptions. These novel approaches implicitly assume infinite mixture of Gaussian distributions on the standardized returns which have been shown to be more flexible and describe better the uncertainty about future volatilities. Finally, the survey presents an illustration using real data to show the flexibility and usefulness of the non‐parametric approach.  相似文献   

4.
我国沪、深股市的波动性研究——基于GARCH族模型   总被引:2,自引:1,他引:2  
万蔚  江孝感 《价值工程》2007,26(10):14-18
金融市场的波动性不仅是投资者关注的焦点之一,而且也是被研究的热点之一。中国股市还非常年轻,股票市场的价格常常表现出大幅波动的特征。本研究以上证综合指数和深圳成分指数为研究对象,分别运用GARCH模型、TARCH模型和EGARCH模型同时拟合,并对比分析了中国股市日收益率波动的动态特征;结果显示,EGACH模型能更有效拟合股市的波动性。  相似文献   

5.
    
We assess the predictive accuracies of a large number of multivariate volatility models in terms of pricing options on the Dow Jones Industrial Average. We measure the value of model sophistication in terms of dollar losses by considering a set of 444 multivariate models that differ in their specification of the conditional variance, conditional correlation, innovation distribution, and estimation approach. All of the models belong to the dynamic conditional correlation class, which is particularly suitable because it allows consistent estimations of the risk neutral dynamics with a manageable amount of computational effort for relatively large scale problems. It turns out that increasing the sophistication in the marginal variance processes (i.e., nonlinearity, asymmetry and component structure) leads to important gains in pricing accuracy. Enriching the model with more complex existing correlation specifications does not improve the performance significantly. Estimating the standard dynamic conditional correlation model by composite likelihood, in order to take into account potential biases in the parameter estimates, generates only slightly better results. To enhance this poor performance of correlation models, we propose a new model that allows for correlation spillovers without too many parameters. This model performs about 60% better than the existing correlation models we consider. Relaxing a Gaussian innovation for a Laplace innovation assumption improves the pricing in a more minor way. In addition to investigating the value of model sophistication in terms of dollar losses directly, we also use the model confidence set approach to statistically infer the set of models that delivers the best pricing performances.  相似文献   

6.
    
The sharp decrease in inflation over the last decade—from 26% in 1990 to 4% in 2001—led the Central Bank of Chile to set its monetary policy interest rate in nominal terms since August 2001. This paper analyzes the effect of nominalization on the behavior of nominal, inflation-linked, and real interest rates, and its subsequent effects on the financial market. We find that nominalization has made nominal interest rates less volatile, while the opposite holds for inflation-linked interest rates. The effect on real interest rates is less unambiguous, but nominalization appears to have increased the cost of borrowing.  相似文献   

7.
    
Volatility proxies like realised volatility (RV) are extensively used to assess the forecasts of squared financial returns produced by volatility models. But are volatility proxies identified as expectations of the squared return? If not, then the results of these comparisons can be misleading, even if the proxy is unbiased. Here, a tripartite distinction is introduced between strong, semi-strong, and weak identification of a volatility proxy as an expectation of the squared return. The definition implies that semi-strong and weak identification can be studied and corrected for via a multiplicative transformation. Well-known tests can be used to check for identification and bias, and Monte Carlo simulations show that they are well sized and powerful—even in fairly small samples. As an illustration, 12 volatility proxies used in three seminal studies are revisited. Half of the proxies do not satisfy either semi-strong or weak identification, but their corrected transformations do. It is then shown how correcting for identification can change the rankings of volatility forecasts.  相似文献   

8.
We study the suitability of applying lasso-type penalized regression techniques to macroe-conomic forecasting with high-dimensional datasets. We consider the performances of lasso-type methods when the true DGP is a factor model, contradicting the sparsity assumptionthat underlies penalized regression methods. We also investigate how the methods handle unit roots and cointegration in the data. In an extensive simulation study we find that penalized regression methods are more robust to mis-specification than factor models, even if the underlying DGP possesses a factor structure. Furthermore, the penalized regression methods can be demonstrated to deliver forecast improvements over traditional approaches when applied to non-stationary data that contain cointegrated variables, despite a deterioration in their selective capabilities. Finally, we also consider an empirical applicationto a large macroeconomic U.S. dataset and demonstrate the competitive performance of penalized regression methods.  相似文献   

9.
10.
    
We use high-frequency intra-day realized volatility data to evaluate the relative forecasting performances of various models that are used commonly for forecasting the volatility of crude oil daily spot returns at multiple horizons. These models include the RiskMetrics, GARCH, asymmetric GARCH, fractional integrated GARCH and Markov switching GARCH models. We begin by implementing Carrasco, Hu, and Ploberger’s (2014) test for regime switching in the mean and variance of the GARCH(1, 1), and find overwhelming support for regime switching. We then perform a comprehensive out-of-sample forecasting performance evaluation using a battery of tests. We find that, under the MSE and QLIKE loss functions: (i) models with a Student’s t innovation are favored over those with a normal innovation; (ii) RiskMetrics and GARCH(1, 1) have good predictive accuracies at short forecast horizons, whereas EGARCH(1, 1) yields the most accurate forecasts at medium horizons; and (iii) the Markov switching GARCH shows a superior predictive accuracy at long horizons. These results are established by computing the equal predictive ability test of Diebold and Mariano (1995) and West (1996) and the model confidence set of Hansen, Lunde, and Nason (2011) over the entire evaluation sample. In addition, a comparison of the MSPE ratios computed using a rolling window suggests that the Markov switching GARCH model is better at predicting the volatility during periods of turmoil.  相似文献   

11.
This paper generalizes the Dynamic Conditional Correlation (DCC) model of Engle (2002), incorporating a flexible non-Gaussian distribution based on Gram-Charlier expansions. The resulting semi-nonparametric-DCC (SNP-DCC) model allows estimation in two stages and deals with the negativity problem which is inherent in truncated SNP densities. We test the performance of a SNP-DCC model with respect to the (Gaussian)-DCC through an empirical application of density forecasting for portfolio returns. Our results show that the proposed multivariate model provides a better in-sample fit and forecast of the portfolio returns distribution, and thus is useful for financial risk forecasting and evaluation.  相似文献   

12.
本文使用1991年1月到2012年3月的样本数据对货币波动率和实际产出波动率之间的关系进行了检验。首先,应用GARCH模型度量货币波动率和产出波动率,进而对二者进行了Granger因果关系检验,发现我国货币供给增长率及其波动率对实际产出增长率及其波动率具有解释和预测能力。其次,使用分位数回归模型研究产出波动率在较小(低分位数)和较大(高分位数)时对货币供给量M0和M1波动率的不同反应程度。最后,提出了稳定产出增长,防止产出剧烈波动的货币政策建议。  相似文献   

13.
It is shown empirically that mixed autoregressive moving average regression models with generalized autoregressive conditional heteroskedasticity (Reg-ARMA-GARCH models) can have multimodality in the likelihood that is caused by a dummy variable in the conditional mean. Maximum likelihood estimates at the local and global modes are investigated and turn out to be qualitatively different, leading to different model-based forecast intervals. In the simpler GARCH(p,q) regression model, we derive analytical conditions for bimodality of the corresponding likelihood. In that case, the likelihood is symmetrical around a local minimum. We propose a solution to avoid this bimodality.  相似文献   

14.
    
Recent evidence suggests that volatility shifts (i.e. structural breaks in volatility) in returns increases kurtosis which significantly contributes to the observed non-normality in market returns. In this paper, we endogenously detect significant shifts in the volatility of US Dollar exchange rate and incorporate this information to estimate Value-at-Risk (VaR) to forecast large declines in the US Dollar exchange rate. Our out-of-sample performance results indicate that a GARCH model with volatility shifts produces the most accurate VaR forecast relative to several benchmark methods. Our contribution is important as changes in US Dollar exchange rate have a substantial impact on the global economy and financial markets.  相似文献   

15.
    
Most economic applications rely on a large number of time series, which typically have a remarkable clustering structure and they are available over different spans. To handle these databases, we combined the expectation–maximization (EM) algorithm outlined by Stock and Watson (JBES, 2002) and the estimation algorithm for large factor models with an unknown number of group structures and unknown membership described by Ando and Bai (JAE, 2016; JASA, 2017) . Several Monte Carlo experiments demonstrated the good performance of the proposed method at determining the correct number of clusters, providing the appropriate number of group-specific factors, identifying error-free group membership, and obtaining accurate estimates of unobserved missing data. In addition, we found that our proposed method performed substantially better than the standard EM algorithm when the data had a grouped factor structure. Using the Federal Reserve Economic Data FRED-QD, our method detected two distinct groups of macroeconomic indicators comprising the real activity indicators and nominal indicators. Thus, we demonstrated the usefulness of our group-specific factor model for studies of business cycle chronology and for forecasting purposes.  相似文献   

16.
This paper proposes two types of stochastic correlation structures for Multivariate Stochastic Volatility (MSV) models, namely the constant correlation (CC) MSV and dynamic correlation (DC) MSV models, from which the stochastic covariance structures can easily be obtained. Both structures can be used for purposes of determining optimal portfolio and risk management strategies through the use of correlation matrices, and for calculating Value-at-Risk (VaR) forecasts and optimal capital charges under the Basel Accord through the use of covariance matrices. A technique is developed to estimate the DC MSV model using the Markov Chain Monte Carlo (MCMC) procedure, and simulated data show that the estimation method works well. Various multivariate conditional volatility and MSV models are compared via simulation, including an evaluation of alternative VaR estimators. The DC MSV model is also estimated using three sets of empirical data, namely Nikkei 225 Index, Hang Seng Index and Straits Times Index returns, and significant dynamic correlations are found. The Dynamic Conditional Correlation (DCC) model is also estimated, and is found to be far less sensitive to the covariation in the shocks to the indexes. The correlation process for the DCC model also appears to have a unit root, and hence constant conditional correlations in the long run. In contrast, the estimates arising from the DC MSV model indicate that the dynamic correlation process is stationary.  相似文献   

17.
    
We numerically solve systems of Black–Scholes formulas for implied volatility and implied risk-free rate of return. After using a seemingly unrelated regressions (SUR) model to obtain point estimates for implied volatility and implied risk-free rate, the options are re-priced using these parameters. After repricing, the difference between the market price and model price is increasing in time to expiration, while the effect of moneyness and the bid-ask spread are ambiguous. Our varying risk-free rate model yields Black–Scholes prices closer to market prices than the fixed risk-free rate model. In addition, our model is better for predicting future evolutions in model-free implied volatility as measured by the VIX.  相似文献   

18.
Past research on time-varying sales-response models emphasized the application of different estimation techniques in examining variation in advertising effectiveness over time. This study focuses on comparing sales forecasts using constant and stochastic coefficients sales-response models. Selected constant and stochastic coefficient models are applied to six sets of bimonthly and one set of annual advertising and sales data to assess forecasting accuracy for time horizons of various lengths. Results show improved forecasting accuracy for a first-order autoregressive stochastic coefficient model, particularly in short-run forecasting applications.  相似文献   

19.
We study the potential merits of using trading and non-trading period market volatilities to model and forecast the stock volatility over the next one to 22 days. We demonstrate the role of overnight volatility information by estimating heterogeneous autoregressive (HAR) model specifications with and without a trading period market risk factor using ten years of high-frequency data for the 431 constituents of the S&P 500 index. The stocks’ own overnight squared returns perform poorly across stocks and forecast horizons, as well as in the asset allocation exercise. In contrast, we find overwhelming evidence that the market-level volatility, proxied by S&P Mini futures, matters significantly for improving the model fit and volatility forecasting accuracy. The greatest model fit and forecast improvements are found for short-term forecast horizons of up to five trading days, and for the non-trading period market-level volatility. The documented increase in forecast accuracy is found to be associated with the stocks’ sensitivity to the market risk factor. Finally, we show that both the trading and non-trading period market realized volatilities are relevant in an asset allocation context, as they increase the average returns, Sharpe ratios and certainty equivalent returns of a mean–variance investor.  相似文献   

20.
本文通过对上海期货交易所的三个品种的涨跌停板制度进行检验,检验方法为:从收益率所拟和的ARMA模型中滤出残差,进行波动率的GARCH模型回归。波动率模型中加入了哑元变量来体现涨停板对后一日波动的影响。实证结果显示,铜、铝、天然橡胶的涨跌停板本应显著地使收益率的波动率减小的作用未检验出,相反却得到涨停板使三个品种显著波动率增大的检验结果。是否需要扩大涨跌停板,提高市场效率?检验结果带给我们如何使涨跌停板制度趋于合理化的思考。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号