首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
We evaluate the binomial option pricing methodology (OPM) by examining simulated portfolio strategies. A key aspect of our study involves sampling from the empirical distribution of observed equity returns. Using a Monte Carlo simulation, we generate equity prices under known volatility and return parameters. We price American–style put options on the equity and evaluate the risk–adjusted performance of various strategies that require writing put options with different maturities and moneyness characteristics. The performance of these strategies is compared to an alternative strategy of investing in the underlying equity. The relative performance of the strategies allows us to identify biases in the binomial OPM leading to the well–known volatility smile . By adjusting option prices so as to rule out dominated option strategies in a mean–variance context, we are able to reduce the pricing errors of the OPM with respect to option prices obtained from the LIFFE. Our results suggest that a simple recalibration of inputs may improve binomial OPM performance.  相似文献   

2.
This paper proposes an approach under which the q-optimal martingale measure, for the case where continuous processes describe the evolution of the asset price and its stochastic volatility, exists for all finite time horizons. More precisely, it is assumed that while the ‘mean–variance trade-off process’ is uniformly bounded, the volatility and asset are imperfectly correlated. As a result, under some regularity conditions for the parameters of the corresponding Cauchy problem, one obtains that the qth moment of the corresponding Radon–Nikodym derivative does not explode in finite time.  相似文献   

3.
This paper focuses on pricing American put options under the double Heston model proposed by Christoffersen et al. By introducing an explicit exercise rule, we obtain the asymptotic expansion of the solution to the partial differential equation for pricing American put options. We calculate American option price by the sum of the European option price and the early exercise premium. The early exercise premium is calculated by the difference between the American and European option prices based on asymptotic expansions. The European option price is obtained by the efficient COS method. Based on the obtained American option price, the double Heston model is calibrated by minimizing the distance between model and market prices, which yields an optimization problem that is solved by a differential evolution algorithm combined with the Matlab function fmincon.m. Numerical results show that the pricing approach is fast and accurate. Empirical results show that the double Heston model has better performance in pricing short-maturity American put options and capturing the volatility term structure of American put options than the Heston model.  相似文献   

4.
Based on an extension of the process of investors' expectations to stochastic volatility we derive asset price processes in a general continuous time pricing kernel framework. Our analysis suggests that stochastic volatility of asset price processes results from the fact that investors do not know the risk of an asset and therefore the volatility of the process of their expectations is stochastic, too. Furthermore, our model is consistent with empirical studies reporting negative correlation between asset prices and their volatility as well as significant variations in the Sharpe ratio.  相似文献   

5.
We present a derivative pricing and estimation methodology for a class of stochastic volatility models that exploits the observed 'bursty' or persistent nature of stock price volatility. Empirical analysis of high-frequency S&P 500 index data confirms that volatility reverts slowly to its mean in comparison to the tick-by- tick fluctuations of the index value, but it is fast mean- reverting when looked at over the time scale of a derivative contract (many months). This motivates an asymptotic analysis of the partial differential equation satisfied by derivative prices, utilizing the distinction between these time scales. The analysis yields pricing and implied volatility formulas, and the latter provides a simple procedure to 'fit the skew' from European index option prices. The theory identifies the important group parameters that are needed for the derivative pricing and hedging problem for European-style securities, namely the average volatility and the slope and intercept of the implied volatility line, plotted as a function of the log- moneyness-to-maturity-ratio. The results considerably simplify the estimation procedure. The remaining parameters, including the growth rate of the underlying, the correlation between asset price and volatility shocks, the rate of mean-reversion of the volatility and the market price of volatility risk are not needed for the asymptotic pricing formulas for European derivatives, and we derive the formula for a knock-out barrier option as an example. The extension to American and path-dependent contingent claims is the subject of future work. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

6.
In this paper we extend option pricing under Lévy dynamics, by assuming that the volatility of the Lévy process is stochastic. We, therefore, develop the analog of the standard stochastic volatility models, when the underlying process is not a standard (unit variance) Brownian motion, but rather a standardized Lévy process. We present a methodology that allows one to compute option prices, under virtually any set of diffusive dynamics for the parameters of the volatility process. First, we use ‘local consistency’ arguments to approximate the volatility process with a finite, but sufficiently dense Markov chain; we then use this regime switching approximation to efficiently compute option prices using Fourier inversion. A detailed example, based on a generalization of the popular stochastic volatility model of Heston (Rev Financial Stud 6 (1993) 327), is used to illustrate the implementation of the algorithms. Computer code is available at www.theponytail.net/  相似文献   

7.
We treat the problem of option pricing under a stochastic volatility model that exhibits long-range dependence. We model the price process as a Geometric Brownian Motion with volatility evolving as a fractional Ornstein–Uhlenbeck process. We assume that the model has long-memory, thus the memory parameter H in the volatility is greater than 0.5. Although the price process evolves in continuous time, the reality is that observations can only be collected in discrete time. Using historical stock price information we adapt an interacting particle stochastic filtering algorithm to estimate the stochastic volatility empirical distribution. In order to deal with the pricing problem we construct a multinomial recombining tree using sampled values of the volatility from the stochastic volatility empirical measure. Moreover, we describe how to estimate the parameters of our model, including the long-memory parameter of the fractional Brownian motion that drives the volatility process using an implied method. Finally, we compute option prices on the S&P 500 index and we compare our estimated prices with the market option prices.  相似文献   

8.
刘海永  严红 《济南金融》2013,(12):20-24
传统期权定价方法是通过主观假定初始价格、执行价格、期限、波动率、无风险利率等条件来对期权进行定价,很少联系实际的期权市场报价对期权进行定价。本文根据股票期权市场报价,通过Matlab快速方便地求解出隐含的波动率和无风险利率,并在此基础上运用Matlab基于最/bZ.乘蒙特卡洛模拟(LSM)方法对该股票的美式期权进行定价。本文揭示了如何根据期权市场报价实现隐含波动率和无风险利率的求解,进而结合LSM方法对美式期权进行定价的一种新方法。此外,本文对LSM方法的改进技术也进行了探讨。  相似文献   

9.
We use a continuous version of the standard deviation premium principle for pricing in incomplete equity markets by assuming that the investor issuing an unhedgeable derivative security requires compensation for this risk in the form of a pre-specified instantaneous Sharpe ratio. First, we apply our method to price options on non-traded assets for which there is a traded asset that is correlated to the non-traded asset. Our main contribution to this particular problem is to show that our seller/buyer prices are the upper/lower good deal bounds of Cochrane and Saá-Requejo (J Polit Econ 108:79–119, 2000) and of Björk and Slinko (Rev Finance 10:221–260, 2006) and to determine the analytical properties of these prices. Second, we apply our method to price options in the presence of stochastic volatility. Our main contribution to this problem is to show that the instantaneous Sharpe ratio, an integral ingredient in our methodology, is the negative of the market price of volatility risk, as defined in Fouque et al. (Derivatives in financial markets with stochastic volatility. Cambridge University Press, 2000).  相似文献   

10.
We develop a new approach for pricing European-style contingent claims written on the time T spot price of an underlying asset whose volatility is stochastic. Like most of the stochastic volatility literature, we assume continuous dynamics for the price of the underlying asset. In contrast to most of the stochastic volatility literature, we do not directly model the dynamics of the instantaneous volatility. Instead, taking advantage of the recent rise of the variance swap market, we directly assume continuous dynamics for the time T variance swap rate. The initial value of this variance swap rate can either be directly observed, or inferred from option prices. We make no assumption concerning the real world drift of this process. We assume that the ratio of the volatility of the variance swap rate to the instantaneous volatility of the underlying asset just depends on the variance swap rate and on the variance swap maturity. Since this ratio is assumed to be independent of calendar time, we term this key assumption the stationary volatility ratio hypothesis (SVRH). The instantaneous volatility of the futures follows an unspecified stochastic process, so both the underlying futures price and the variance swap rate have unspecified stochastic volatility. Despite this, we show that the payoff to a path-independent contingent claim can be perfectly replicated by dynamic trading in futures contracts and variance swaps of the same maturity. As a result, the contingent claim is uniquely valued relative to its underlying’s futures price and the assumed observable variance swap rate. In contrast to standard models of stochastic volatility, our approach does not require specifying the market price of volatility risk or observing the initial level of instantaneous volatility. As a consequence of our SVRH, the partial differential equation (PDE) governing the arbitrage-free value of the contingent claim just depends on two state variables rather than the usual three. We then focus on the consistency of our SVRH with the standard assumption that the risk-neutral process for the instantaneous variance is a diffusion whose coefficients are independent of the variance swap maturity. We show that the combination of this maturity independent diffusion hypothesis (MIDH) and our SVRH implies a very special form of the risk-neutral diffusion process for the instantaneous variance. Fortunately, this process is tractable, well-behaved, and enjoys empirical support. Finally, we show that our model can also be used to robustly price and hedge volatility derivatives.  相似文献   

11.
We examine in this article the pricing of target volatility options in the lognormal fractional SABR model. A decomposition formula of Itô's calculus yields an approximation formula for the price of a target volatility option in small time by the technique of freezing the coefficient. A decomposition formula in terms of Malliavin derivatives is also provided. Alternatively, we also derive closed form expressions for a small volatility of volatility expansion of the price of a target volatility option. Numerical experiments show the accuracy of the approximations over a reasonably wide range of parameters.  相似文献   

12.
The skew effect in market implied volatility can be reproduced by option pricing theory based on stochastic volatility models for the price of the underlying asset. Here we study the performance of the calibration of the S&P 500 implied volatility surface using the asymptotic pricing theory under fast mean-reverting stochastic volatility described in [8]. The time-variation of the fitted skew-slope parameter shows a periodic behaviour that depends on the option maturity dates in the future, which are known in advance. By extending the mathematical analysis to incorporate model parameters which are time-varying, we show this behaviour can be explained in a manner consistent with a large model class for the underlying price dynamics with time-periodic volatility coefficients.Received: December 2003, Mathematics Subject Classification (2000): 91B70, 60F05, 60H30JEL Classification: C13, G13Jean-Pierre Fouque: Work partially supported by NSF grant DMS-0071744.Ronnie Sircar: Work supported by NSF grant DMS-0090067. We are grateful to Peter Thurston for research assistance.We thank a referee for his/her comments which improved the paper.  相似文献   

13.
If the volatility is stochastic, stock price returns and European option prices depend on the time average of the variance, i.e. the integrated variance, not on the path of the volatility. Applying a Bayesian statistical approach, we compute a forward-looking estimate of this variance, an option-implied integrated variance. Simultaneously, we obtain estimates of the correlation coefficient between stock price and volatility shocks, and of the parameters of the volatility process. Due to the convexity of the Black–Scholes formula with respect to the volatility, pricing and hedging with Black–Scholes-type formulas and the implied volatility often lead to inaccuracies if the volatility is stochastic. Theoretically, this problem can be avoided by using Hull–White-type option pricing and hedging formulas and the integrated variance. We use the implied integrated variance and Hull–White-type formulas to hedge European options and certain volatility derivatives.  相似文献   

14.
We study the cross-sectional performance of option pricing models in which the volatility of the underlying stock is a deterministic function of the stock price and time. For each date in our sample of FTSE 100 index option prices, we fit an implied binomial tree to the panel of all European style options with different strike prices and maturities and then examine how well this model prices a corresponding panel of American style options. We find that the implied binomial tree model performs no better than an ad-hoc procedure of smoothing Black–Scholes implied volatilities across strike prices and maturities. Our cross-sectional results complement the time-series findings of Dumas et al. [J. Finance 53 (1998) 2059].  相似文献   

15.
Arbitrage-free market models for option prices: the multi-strike case   总被引:1,自引:1,他引:0  
This paper studies modeling and existence issues for market models of option prices in a continuous-time framework with one stock, one bond and a family of European call options for one fixed maturity and all strikes. After arguing that (classical) implied volatilities are ill-suited for constructing such models, we introduce the new concepts of local implied volatilities and price level. We show that these new quantities provide a natural and simple parametrization of all option price models satisfying the natural static arbitrage bounds across strikes. We next characterize absence of dynamic arbitrage for such models in terms of drift restrictions on the model coefficients. For the resulting infinite system of SDEs for the price level and all local implied volatilities, we then study the question of solvability and provide sufficient conditions for existence and uniqueness of a solution. We give explicit examples of volatility coefficients satisfying the required assumptions, and hence of arbitrage-free multi-strike market models of option prices.   相似文献   

16.
Options markets, self-fulfilling prophecies, and implied volatilities   总被引:1,自引:0,他引:1  
This paper answers the following often asked question in option pricing theory: if the underlying asset's price does not satisfy a lognormal distribution, can market prices satisfy the Black-Scholes formula just because market participants believe it should? In complete markets, if the underlying asset's objective distribution is not lognormal, then the answer is no. But, in an incomplete market, if the underlying asset's objective distribution is not lognormal and all traders believe it is, then the answer is yes! The Black-Scholes formula can be a self-fulfilling prophecy. The proof of this second assertion consists of generating an economy where self-confirming beliefs sustain the Black-Scholes formula as an equilibrium. An asymmetric information model is provided, where the underlying asset's price has stochastic volatility and drift. This model is distinct from the existing pricing models in the literature, and it provides new empirical implications concerning Black-Scholes implied volatilities and the bid/ask spread. Similar to stochastic volatility models, this model is consistent with the implied volatility “smile” pattern in strike prices. In addition, it is consistent with implied volatilities being biased predictors of future volatilities.  相似文献   

17.
In this paper we develop a general method for deriving closed-form approximations of European option prices and equivalent implied volatilities in stochastic volatility models. Our method relies on perturbations of the model dynamics and we show how the expansion terms can be calculated using purely probabilistic methods. A flexible way of approximating the equivalent implied volatility from the basic price expansion is also introduced. As an application of our method we derive closed-form approximations for call prices and implied volatilities in the Heston [Rev. Financial Stud., 1993, 6, 327–343] model. The accuracy of these approximations is studied and compared with numerically obtained values.  相似文献   

18.
《Quantitative Finance》2013,13(2):116-132
Abstract

This paper develops a family of option pricing models when the underlying stock price dynamic is modelled by a regime switching process in which prices remain in one volatility regime for a random amount of time before switching over into a new regime. Our family includes the regime switching models of Hamilton (Hamilton J 1989 Econometrica 57 357–84), in which volatility influences returns. In addition, our models allow for feedback effects from returns to volatilities. Our family also includes GARCH option models as a special limiting case. Our models are more general than GARCH models in that our variance updating schemes do not only depend on levels of volatility and asset innovations, but also allow for a second factor that is orthogonal to asset innovations. The underlying processes in our family capture the asymmetric response of volatility to good and bad news and thus permit negative (or positive) correlation between returns and volatility. We provide the theory for pricing options under such processes, present an analytical solution for the special case where returns provide no feedback to volatility levels, and develop an efficient algorithm for the computation of American option prices for the general case.  相似文献   

19.
Based on a general specification of the asset specific pricing kernel, we develop a pricing model using an information process with stochastic volatility. We derive analytical asset and option pricing formulas. The asset prices in this rational expectations model exhibit crash-like, strong downward movements. The resulting option pricing formula is consistent with the strong negative skewness and high levels of kurtosis observed in empirical studies. Furthermore, we determine credit spreads in a simple structural model.   相似文献   

20.
We give a sufficient condition to identify the q-optimal signed and the q-optimal absolutely continuous martingale measures in exponential Lévy models. As a consequence, we find that in the one-dimensional case, the q-optimal equivalent martingale measures may exist only if the tails for upward jumps are extraordinarily light. Moreover, we derive the convergence of q-optimal signed, resp. absolutely continuous, martingale measures to the minimal entropy martingale measure as q approaches one. Finally, some implications for portfolio optimization are discussed. C.N. gratefully acknowledges financial support by UniCredit, Markets and Investment Banking. However, this paper does not reflect the opinion of UniCredit, Markets and Investment Banking, it is the personal view of the authors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号