首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
LetX 1,X 2, ...,X n (n≥3) be a random sample on a random variableX with distribution functionF having a unique continuous inverseF −1 over (a,b), −∞≤a<b≤∞ the support ofF. LetX 1:n <X 2:n <...<X n:n be the corresponding order statistics. Letg be a nonconstant continuous function over (a,b). Then for some functionG over (a, b) and for some positive integersr ands, 1<r+1<sn
  相似文献   

2.
Let {X j } be a strictly stationary sequence of negatively associated random variables with the marginal probability density function f(x). The recursive kernel estimators of f(x) are defined by
and the Rosenblatt–Parzen’s kernel estimator of f(x) is defined by , where 0  <  b n → 0 are bandwidths and K is some kernel function. In this paper, we study the uniformly Berry–Esseen bounds for these estimators of f(x). In particular, by choice of the bandwidths, the Berry–Esseen bounds of the estimators attain .  相似文献   

3.
Dr. N. Henze 《Metrika》1984,31(1):259-273
Summary For independents-variate samplesX 1, ...,X m i.i.d.f. (.),Y 1, ...,Y n i.i.d. g. (.), where the densitiesf (.),g (.) are assumed to be continuous on their respective sets of positivity, consider the numberT m,n of pointsZ of the pooled sample (which are either of typeX or of typeY) such that the nearest neighbor ofZ is of the same type asZ. We show that, as , independently of (.). An omnibus test for the two sample problem f(.)g(.) orf(.)g(.)? may be obtained by rejecting the hypothesisf(.)g(.) for large values ofT m,n.  相似文献   

4.
Taizhong Hu  Ying Li 《Metrika》2007,65(3):325-330
For a multivariate random vector X = (X 1,...,X n ) with a log-concave density function, it is shown that the minimum min{X 1,...,X n } has an increasing failure rate, and the maximum max{X 1,...,X n } has a decreasing reversed hazard rate. As an immediate consequence, the result of Gupta and Gupta (in Metrika 53:39–49, 2001) on the multivariate normal distribution is obtained. One error in Gupta and Gupta method is also pointed out.   相似文献   

5.
LetX 1,X 2,… be i.i.d. with finite meanμ>0,S n =X 1+…+X n . Forf(n)=n β ,c>0 we consider the stopping timesT c =inf{n:S n >c+f(n)} with overshootR c =S T c −(c+f(T c )). For 0<β<1 we give a bound for sup c≥0 ER c in the spirit of Lorden’s well-known inequality forf=0.  相似文献   

6.
We considern independent and identically distributed random variables with common continuous distribution functionF concentrated on (0, ∞). LetX 1∶n≤X2∶n...≤Xn∶n be the corresponding order statistics. Put $$d_s \left( x \right) = P\left( {X_{k + s:n} - X_{k:n} \geqslant x} \right) - P\left( {X_{s:n - k} \geqslant x} \right), x \geqslant 0,$$ and $$\delta _s \left( {x, \rho } \right) = P\left( {X_{k + s:n} - X_{k:n} \geqslant x} \right) - e^{ - \rho \left( {n - k} \right)x} ,\rho > 0,x \geqslant 0.$$ Fors=1 it is well known that each of the conditions d1(x)=O ?x≥0 and δ1 (x, p) = O ?x≥0 implies thatF is exponential; but the analytic tools in the proofs of these two statements are radically different. In contrast to this in the present paper we present a rather elementary method which permits us to derive the above conclusions for somes, 1≤n —k, using only asymptotic assumptions (either forx→0 orx→∞) ond s(x) and δ1 (x, p), respectively.  相似文献   

7.
LetX 1,X 2, …,X n(n ? 2) be a random sample on a random variablex with a continuous distribution functionF which is strictly increasing over (a, b), ?∞ ?a <b ? ∞, the support ofF andX 1:n ?X 2:n ? … ?X n:n the corresponding order statistics. Letg be a nonconstant continuous function over (a, b) with finiteg(a +) andE {g(X)}. Then for some positive integers, 1 <s ?n $$E\left\{ {\frac{1}{{s - 1}}\sum\limits_{i - 1}^{s - 1} {g(X_{i:n} )|X_{s:n} } = x} \right\} = 1/2(g(x) + g(a^ + )), \forall x \in (a,b)$$ iffg is bounded, monotonic and \(F(x) = \frac{{g(x) - g(a^ + )}}{{g(b^ - ) - g(a^ + )}},\forall x \in (a,b)\) . This leads to characterization of several distribution functions. A general form of this result is also stated.  相似文献   

8.
9.
F. Brodeau 《Metrika》1999,49(2):85-105
This paper is devoted to the study of the least squares estimator of f for the classical, fixed design, nonlinear model X (t i)=f(t i)+ε(t i), i=1,2,…,n, where the (ε(t i))i=1,…,n are independent second order r.v.. The estimation of f is based upon a given parametric form. In Brodeau (1993) this subject has been studied in the homoscedastic case. This time we assume that the ε(t i) have non constant and unknown variances σ2(t i). Our main goal is to develop two statistical tests, one for testing that f belongs to a given class of functions possibly discontinuous in their first derivative, and another for comparing two such classes. The fundamental tool is an approximation of the elements of these classes by more regular functions, which leads to asymptotic properties of estimators based on the least squares estimator of the unknown parameters. We point out that Neubauer and Zwanzig (1995) have obtained interesting results for connected subjects by using the same technique of approximation. Received: February 1996  相似文献   

10.
S. K. Bar-Lev  P. Enis 《Metrika》1985,32(1):391-394
Summary LetX 1, ...,X n be i.i.d. random variables with common distribution an element of a linear one-parameter exponential family indexed by a natural parameter . It is proved that the distribution of is an element ofF, for all andn=1, 2, ... if and only ifF is a family of scale transformed Poisson distributions.  相似文献   

11.
Let { Xi} i 3 1{\{ X_{i}\} _{i\geq 1}} be an infinite sequence of recurrent partially exchangeable binary random variables. We study the exact distributions of two run statistics (total number of success runs and the longest success run) in { Xi} i 3 1{\{ X_{i}\} _{i\geq1}} . Since a flexible class of models for binary sequences can be obtained using the concept of partial exchangeability, as a special case of our results one can obtain the distribution of runs in ordinary Markov chains, exchangeable and independent sequences. The results also enable us to study the distribution of runs in particular urn models.  相似文献   

12.
Let (X n ) be a sequence of i.i.d random variables and U n a U-statistic corresponding to a symmetric kernel function h, where h 1(x 1) = Eh(x 1, X 2, X 3, . . . , X m ), μ = E(h(X 1, X 2, . . . , X m )) and ? 1 = Var(h 1(X 1)). Denote \({\gamma=\sqrt{\varsigma_{1}}/\mu}\), the coefficient of variation. Assume that P(h(X 1, X 2, . . . , X m ) > 0) = 1, ? 1 > 0 and E|h(X 1, X 2, . . . , X m )|3 < ∞. We give herein the conditions under which
$\lim_{N\rightarrow\infty}\frac{1}{\log N}\sum_{n=1}^{N}\frac{1}{n}g\left(\left(\prod_{k=m}^{n}\frac{U_{k}}{\mu}\right)^{\frac{1}{m\gamma\sqrt{n}}}\right) =\int\limits_{-\infty}^{\infty}g(x)dF(x)\quad {\rm a.s.}$
for a certain family of unbounded measurable functions g, where F(·) is the distribution function of the random variable \({\exp(\sqrt{2} \xi)}\) and ξ is a standard normal random variable.
  相似文献   

13.
Let U 1, U 2, . . . , U n–1 be an ordered sample from a Uniform [0,1] distribution. The non-overlapping uniform spacings of order s are defined as \({G_{i}^{(s)} =U_{is} -U_{(i-1)s}, i=1,2,\ldots,N^\prime, G_{N^\prime+1}^{(s)} =1-U_{N^\prime s}}\) with notation U 0 = 0, U n = 1, where \({N^\prime=\left\lfloor n/s\right\rfloor}\) is the integer part of n/s. Let \({ N=\left\lceil n/s\right\rceil}\) be the smallest integer greater than or equal to n/s, f m (u), m = 1, 2, . . . , N, be a sequence of real-valued Borel-measurable functions. In this article a Cramér type large deviation theorem for the statistic \({f_{1,n} (nG_{1}^{(s)})+\cdots+f_{N,n} (nG_{N}^{(s)} )}\) is proved.  相似文献   

14.
Let X 1,X 2,…,X n be a random sample from a continuous distribution with the corresponding order statistics X 1:nX 2:n≤…≤X n:n. All the distributions for which E(X k+r: n|X k:n)=a X k:n+b are identified, which solves the problem stated in Ferguson (1967). Received February 1998  相似文献   

15.
K. F. Cheng 《Metrika》1982,29(1):215-225
For a specified distribution functionG with densityg, and unknown distribution functionF with densityf, the generalized failure rate function (x)=f(x)/gG –1 F(x) may be estimated by replacingf andF byf n and , wheref n is an empirical density function based on a sample of sizen from the distribution functionF, and . Under regularity conditions we show and, under additional restrictions whereC is a subset ofR and n. Moreover, asymptotic normality is derived and the Berry-Esséen type bound is shown to be related to a theorem which concerns the sum of i.i.d. random variables. The order boundO(n–1/2+c n 1/2 ) is established under mild conditions, wherec n is a sequence of positive constants related tof n and tending to 0 asn.Research was supported in part by the Army, Navy and Air Force under Office of Naval Research contract No. N00014-76-C-0608. AMS 1970 subject classifications. Primary 62G05. Secondary 60F15.  相似文献   

16.
In this work, for an exchangeable sequence of random variables {Xi, i̿}, and two nondecreasing sequences of positive integers {hn, ǹ} and {kn, ǹ}, where hn+knhn, Qǹ, we prove that {Rn,hn,kn/n, ǹ} forms a reverse submartingale sequence, where R_{n,hn,kn}={\displaystyle {1\over kn}} ~^{kn-1}_{j=0} X_{n-j,n}-{\displaystyle {1\over hn}} ~^{hn}_{j=1} X_{j,n}$R_{n,hn,kn}={\displaystyle {1\over kn}} ~^{kn-1}_{j=0} X_{n-j,n}-{\displaystyle {1\over hn}} ~^{hn}_{j=1} X_{j,n}, and X1,nhX2,nh…hXn,n are the order statistics based on {X1,…,Xn}.  相似文献   

17.
N. Giri  M. Behara  P. Banerjee 《Metrika》1992,39(1):75-84
Summary LetX=(X ij )=(X 1, ...,X n )’,X i =(X i1, ...,X ip )’,i=1,2, ...,n be a matrix having a multivariate elliptical distribution depending on a convex functionq with parameters, 0,σ. Let ϱ22 -2 be the squared multiple correlation coefficient between the first and the remainingp 2+p 3=p−1 components of eachX i . We have considered here the problem of testingH 02=0 against the alternativesH 11 -2 =0, ϱ 2 -2 >0 on the basis ofX andn 1 additional observationsY 1 (n 1×1) on the first component,n 2 observationsY 2(n 2×p 2) on the followingp 2 components andn 3 additional observationsY 3(n 3×p 3) on the lastp 3 components and we have derived here the locally minimax test ofH 0 againstH 1 when ϱ 2 -2 →0 for a givenq. This test, in general, depends on the choice ofq of the familyQ of elliptically symmetrical distributions and it is not optimality robust forQ.  相似文献   

18.
Summary SupposeX is a non-negative random variable with an absolutely continuous (with respect to Lebesgue measure) distribution functionF (x) and the corresponding probability density functionf(x). LetX 1,X 2,...,X n be a random sample of sizen fromF andX i,n is thei-th smallest order statistics. We define thej-th order gapg i,j(n) asg i,j(n)=X i+j,n–Xi,n 1i<n, 1nn–i. In this paper a characterization of the exponential distribution is given by considering a distribution property ofg i,j(n).  相似文献   

19.
Michael Cramer 《Metrika》1997,46(1):187-211
The asymptotic distribution of a branching type recursion with non-stationary immigration is investigated. The recursion is given by , where (X l ) is a random sequence, (L n −1(1) ) are iid copies ofL n−1,K is a random number andK, (L n −1(1) ), {(X l ),Y n } are independent. This recursion has been studied intensively in the literature in the case thatX l ≥0,K is nonrandom andY n =0 ∀n. Cramer, Rüschendorf (1996b) treat the above recursion without immigration with starting conditionL 0=1, and easy to handle cases of the recursion with stationary immigration (i.e. the distribution ofY n does not depend on the timen). In this paper a general limit theorem will be deduced under natural conditions including square-integrability of the involved random variables. The treatment of the recursion is based on a contraction method. The conditions of the limit theorem are built upon the knowledge of the first two moments ofL n . In case of stationary immigration a detailed analysis of the first two moments ofL n leads one to consider 15 different cases. These cases are illustrated graphically and provide a straight forward means to check the conditions and to determine the operator whose unique fixed point is the limit distribution of the normalizedL n .  相似文献   

20.
Let X 1, . . . , X n be independent exponential random variables with respective hazard rates λ1, . . . , λ n , and Y 1, . . . , Y n be independent and identically distributed random variables from an exponential distribution with hazard rate λ. Then, we prove that X 2:n , the second order statistic from X 1, . . . , X n , is larger than Y 2:n , the second order statistic from Y 1, . . . , Y n , in terms of the dispersive order if and only if
$\lambda\geq \sqrt{\frac{1}{{n\choose 2}}\sum_{1\leq i < j\leq n}\lambda_i\lambda_j}.$
We also show that X 2:n is smaller than Y 2:n in terms of the dispersive order if and only if
$ \lambda\le\frac{\sum^{n}_{i=1} \lambda_i-{\rm max}_{1\leq i\leq n} \lambda_i}{n-1}. $
Moreover, we extend the above two results to the proportional hazard rates model. These two results established here form nice extensions of the corresponding results on hazard rate, likelihood ratio, and MRL orderings established recently by Pǎltǎnea (J Stat Plan Inference 138:1993–1997, 2008), Zhao et al. (J Multivar Anal 100:952–962, 2009), and Zhao and Balakrishnan (J Stat Plan Inference 139:3027–3037, 2009), respectively.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号