首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
In this paper we develop a general method for deriving closed-form approximations of European option prices and equivalent implied volatilities in stochastic volatility models. Our method relies on perturbations of the model dynamics and we show how the expansion terms can be calculated using purely probabilistic methods. A flexible way of approximating the equivalent implied volatility from the basic price expansion is also introduced. As an application of our method we derive closed-form approximations for call prices and implied volatilities in the Heston [Rev. Financial Stud., 1993, 6, 327–343] model. The accuracy of these approximations is studied and compared with numerically obtained values.  相似文献   

2.
This paper develops a non-finite-difference-based method of American option pricing under stochastic volatility by extending the Geske-Johnson compound option scheme. The characteristic function of the underlying state vector is inverted to obtain the vector’s density using a kernel-smoothed fast Fourier transform technique. The method produces option values that are closely in line with the values obtained by finite-difference schemes. It also performs well in an empirical application with traded S&P 100 index options. The method is especially well suited to price a set of options with different strikes on the same underlying asset, which is a task often encountered by practitioners.  相似文献   

3.
Existing evidence indicates that average returns of purchased market-hedge S&P 500 index calls, puts, and straddles are non-zero but large and negative, which implies that options are expensive. This result is intuitively explained by means of volatility risk and a negative volatility risk premium, but there is a recent surge of empirical and analytical studies which also attempt to find the sources of this premium. An important question in the line of a priced volatility explanation is if a standard stochastic volatility model can also explain the cross-sectional findings of these empirical studies. The answer is fairly positive. The volatility elasticity of calls and puts is several times the level of market volatility, depending on moneyness and maturity, and implies a rich cross-section of negative average option returns—even if volatility risk is not priced heavily, albeit negative. We introduce and calibrate a new measure of option overprice to explain these results. This measure is robust to jump risk if jumps are not priced.   相似文献   

4.
The number of tailor-made hybrid structured products has risen more prominently to fit each investor’s preferences and requirements as they become more diversified. The structured products entail synthetic derivatives such as combinations of bonds and/or stocks conditional on how they are backed up by underlying securities, stochastic volatility, stochastic interest rates or exchanges rates. The complexity of these multi-asset structures yields lots of difficulties of pricing the products. Because of the complexity, Monte-Carlo simulation is a possible choice to price them but it may not produce stable Greeks leading to a trouble in hedging against risks. In this light, it is desirable to use partial differential equations with relevant analytic and numerical techniques. Even if the partial differential equation method would generate stable security prices and Greeks for single asset options, however, it may result in the curse of dimensionality when pricing multi-asset derivatives. In this study, we make the best use of multi-scale nature of stochastic volatility to lift the curse of dimensionality for up to three asset cases. Also, we present a transformation formula by which the pricing group parameters required for the multi-asset options in illiquid market can be calculated from the underlying market parameters.  相似文献   

5.
Annals of Finance - This paper focuses on valuing R&D projects using a twofold compound real option by including two knock-out barriers. However, the valuation of R&D projects is...  相似文献   

6.
We develop a new approach for pricing European-style contingent claims written on the time T spot price of an underlying asset whose volatility is stochastic. Like most of the stochastic volatility literature, we assume continuous dynamics for the price of the underlying asset. In contrast to most of the stochastic volatility literature, we do not directly model the dynamics of the instantaneous volatility. Instead, taking advantage of the recent rise of the variance swap market, we directly assume continuous dynamics for the time T variance swap rate. The initial value of this variance swap rate can either be directly observed, or inferred from option prices. We make no assumption concerning the real world drift of this process. We assume that the ratio of the volatility of the variance swap rate to the instantaneous volatility of the underlying asset just depends on the variance swap rate and on the variance swap maturity. Since this ratio is assumed to be independent of calendar time, we term this key assumption the stationary volatility ratio hypothesis (SVRH). The instantaneous volatility of the futures follows an unspecified stochastic process, so both the underlying futures price and the variance swap rate have unspecified stochastic volatility. Despite this, we show that the payoff to a path-independent contingent claim can be perfectly replicated by dynamic trading in futures contracts and variance swaps of the same maturity. As a result, the contingent claim is uniquely valued relative to its underlying’s futures price and the assumed observable variance swap rate. In contrast to standard models of stochastic volatility, our approach does not require specifying the market price of volatility risk or observing the initial level of instantaneous volatility. As a consequence of our SVRH, the partial differential equation (PDE) governing the arbitrage-free value of the contingent claim just depends on two state variables rather than the usual three. We then focus on the consistency of our SVRH with the standard assumption that the risk-neutral process for the instantaneous variance is a diffusion whose coefficients are independent of the variance swap maturity. We show that the combination of this maturity independent diffusion hypothesis (MIDH) and our SVRH implies a very special form of the risk-neutral diffusion process for the instantaneous variance. Fortunately, this process is tractable, well-behaved, and enjoys empirical support. Finally, we show that our model can also be used to robustly price and hedge volatility derivatives.  相似文献   

7.
This paper considers the problem of pricing American options when the dynamics of the underlying are driven by both stochastic volatility following a square-root process as used by Heston [Rev. Financial Stud., 1993, 6, 327–343], and by a Poisson jump process as introduced by Merton [J. Financial Econ., 1976, 3, 125–144]. Probability arguments are invoked to find a representation of the solution in terms of expectations over the joint distribution of the underlying process. A combination of Fourier transform in the log stock price and Laplace transform in the volatility is then applied to find the transition probability density function of the underlying process. It turns out that the price is given by an integral dependent upon the early exercise surface, for which a corresponding integral equation is obtained. The solution generalizes in an intuitive way the structure of the solution to the corresponding European option pricing problem obtained by Scott [Math. Finance, 1997, 7(4), 413–426], but here in the case of a call option and constant interest rates.  相似文献   

8.
Efficient valuation of exchange options with random volatilities while challenging at analytical level, has strong practical implications: in this paper we present a new approach to the problem which allows for extensions of previous known results. We undertake a route based on a multi-asset generalization of a methodology developed in Antonelli and Scarlatti (Finan Stoch 13:269–303, 2009) to handle simple European one-asset derivatives with volatility paths described by Ito’s diffusive equations. Our method seems to adapt rather smoothly to the evaluation of Exchange options involving correlations among all the financial quantities that specify the model and it is based on expanding and approximating the theoretical evaluation formula with respect to correlation parameters. It applies to a whole range of models and does not require any particular distributional property. In order to test the quality of our approximation numerical simulations are provided in the last part of the paper.  相似文献   

9.
The number of factors driving the uncertain dynamics of commodity prices has been a central consideration in financial literature. While the majority of empirical studies relies on the assumption that up to three factors are sufficient to explain all relevant uncertainty inherent in commodity spot, futures, and option prices, evidence from Trolle and Schwartz (Rev Financ Stud 22(11):4423–4461, 2009b) and Hughen (J Futures Mark 30(2):101–133, 2010) indicates a need for additional risk factors. In this article, we propose a four-factor maximal affine stochastic volatility model that allows for three independent sources of risk in the futures term structure and an additional, potentially unspanned stochastic volatility process. The model principally integrates the insights from Hughen (2010) and Tang (Quant Finance 12(5):781–790, 2012) and nests many well-known models in the literature. It can account for several stylized facts associated with commodity dynamics such as mean reversion to a stochastic level, stochastic volatility in the convenience yield, a time-varying correlation structure, and time-varying risk-premia. In-sample and out-of-sample tests indicate a superior model fit to futures and options data as well as lower hedging errors compared to three-factor benchmark models. The results also indicate that three factors are not sufficient to model the joint dynamics of futures and option prices accurately.  相似文献   

10.
In a standard option-pricing model, with continuous-trading and diffusion processes, this paper shows that the price of one European-style option can be factorized into two intuitive components: One robust, X0, which is priced by arbitrage, and a second, Π0, which depends on a risk orthogonal to the traded securities. This result implies the following: (1) In an incomplete market, these parts represent the price of a hedging portfolio, which is unique, and a premium, which depends only on the risk premiums associated with the residual risk, respectively. (2) In a complete market, it allows factoring the contribution of the different sources of risk to the final option price. For example, in a stochastic volatility model, we can quantify the impact on the option price of volatility risk relative to market risk, Π0 and X0, respectively. Hence, certain misspricings in option markets can be directly related to the premium, Π0. (3) Moreover, these results extend to American securities, which have a third component – an additional early-exercise premium.  相似文献   

11.
The existing literature contains conflicting evidence regarding the relative quality of stock market volatility forecasts. Evidence can be found supporting the superiority of relatively complex models (including ARCH class models), while there is also evidence supporting the superiority of more simple alternatives. These inconsistencies are of particular concern because of the use of, and reliance on, volatility forecasts in key economic decision-making and analysis, and in asset/option pricing. This paper employs daily Australian data to examine this issue. The results suggest that the ARCH class of models and a simple regression model provide superior forecasts of volatility. However, the various model rankings are shown to be sensitive to the error statistic used to assess the accuracy of the forecasts. Nevertheless, a clear message is that volatility forecasting is a notoriously difficult task.  相似文献   

12.
This study examines the performance of the S&P 100 implied volatility as a forecast of future stock market volatility. The results indicate that the implied volatility is an upward biased forecast, but also that it contains relevant information regarding future volatility. The implied volatility dominates the historical volatility rate in terms of ex ante forecasting power, and its forecast error is orthogonal to parameters frequently linked to conditional volatility, including those employed in various ARCH specifications. These findings suggest that a linear model which corrects for the implied volatility's bias can provide a useful market-based estimator of conditional volatility.  相似文献   

13.
A new computational method for approximating prices of zero-coupon bonds and bond option prices under general Chan–Karolyi–Longstaff–Schwartz models is proposed. The pricing partial differential equations are discretized using second-order finite difference approximations and an exponential time integration scheme combined with best rational approximations based on the Carathéodory–Fejér procedure is employed for solving the resulting semi-discrete equations. The algorithm has a linear computational complexity and provides accurate bond and European bond option prices. We give several numerical results which illustrate the computational efficiency of the algorithm and uniform second-order convergence rates for the computed bond and bond option prices.  相似文献   

14.
This paper describes European-style valuation and hedging procedures for a class of knockout barrier options under stochastic volatility. A pricing framework is established by applying mean self-financing arguments and the minimal equivalent martingale measure. Using appropriate combinations of stochastic numerical and variance reduction procedures we demonstrate that fast and accurate valuations can be obtained for down-and-out call options for the Heston model.  相似文献   

15.
16.
Helin Zhu  Fan Ye 《Quantitative Finance》2013,13(11):1885-1900
Fast pricing of American-style options has been a difficult problem since it was first introduced to the financial markets in 1970s, especially when the underlying stocks’ prices follow some jump-diffusion processes. In this paper, we extend the ‘true martingale algorithm’ proposed by Belomestny et al. [Math. Finance, 2009, 19, 53–71] for the pure-diffusion models to the jump-diffusion models, to fast compute true tight upper bounds on the Bermudan option price in a non-nested simulation manner. By exploiting the martingale representation theorem on the optimal dual martingale driven by jump-diffusion processes, we are able to explore the unique structure of the optimal dual martingale and construct an approximation that preserves the martingale property. The resulting upper bound estimator avoids the nested Monte Carlo simulation suffered by the original primal–dual algorithm, therefore significantly improving the computational efficiency. Theoretical analysis is provided to guarantee the quality of the martingale approximation. Numerical experiments are conducted to verify the efficiency of our algorithm.  相似文献   

17.
We introduce a variant of the Barndorff-Nielsen and Shephard stochastic volatility model where the non-Gaussian Ornstein–Uhlenbeck process describes some measure of trading intensity like trading volume or number of trades instead of unobservable instantaneous variance. We develop an explicit estimator based on martingale estimating functions in a bivariate model that is not a diffusion, but admits jumps. It is assumed that both the quantities are observed on a discrete grid of fixed width, and the observation horizon tends to infinity. We show that the estimator is consistent and asymptotically normal and give explicit expressions of the asymptotic covariance matrix. Our method is illustrated by a finite sample experiment and a statistical analysis of IBM? stock from the New York Stock Exchange and Microsoft Corporation? stock from Nasdaq during a history of five years.  相似文献   

18.
This paper suggests a new method of implementing the principle of maximum entropy to retrieve the risk neutral density of future stock, or any other asset, returns from European call and put prices. The method maximizes the entropy measure subject to risk neutral moment constraints in place of option prices used by previous studies. These moments can be retrieved from market option prices at each point of time, in a first step. Compared to other existing methods of retrieving the risk neutral density based on the principle of maximum entropy, the benefits of the method that the paper suggests is the use of all the available information provided by the market more efficiently. To evaluate the performance of the suggested method, the paper compares it to other risk neutral density estimation techniques by conducting a simulation study and carrying out some crucial empirical exercises.  相似文献   

19.
The discounted stock price under the Constant Elasticity of Variance model is not a martingale when the elasticity of variance is positive. Two expressions for the European call price then arise, namely the price for which put-call parity holds and the price that represents the lowest cost of replicating the call option’s payoffs. The greeks of European put and call prices are derived and it is shown that the greeks of the risk-neutral call can substantially differ from standard results. For instance, the relation between the call price and variance may become non-monotonic. Such unfamiliar behavior then might yield option-based tests for the potential presence of a bubble in the underlying stock price.  相似文献   

20.
This paper compares the empirical performances of statistical projection models with those of the Black–Scholes (adapted to account for skew) and the GARCH option pricing models. Empirical analysis on S&P500 index options shows that the out-of-sample pricing and projected trading performances of the semi-parametric and nonparametric projection models are substantially better than more traditional models. Results further indicate that econometric models based on nonlinear projections of observable inputs perform better than models based on OLS projections, consistent with the notion that the true unobservable option pricing model is inherently a nonlinear function of its inputs. The econometric option models presented in this paper should prove useful and complement mainstream mathematical modeling methods in both research and practice.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号