首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The skew effect in market implied volatility can be reproduced by option pricing theory based on stochastic volatility models for the price of the underlying asset. Here we study the performance of the calibration of the S&P 500 implied volatility surface using the asymptotic pricing theory under fast mean-reverting stochastic volatility described in [8]. The time-variation of the fitted skew-slope parameter shows a periodic behaviour that depends on the option maturity dates in the future, which are known in advance. By extending the mathematical analysis to incorporate model parameters which are time-varying, we show this behaviour can be explained in a manner consistent with a large model class for the underlying price dynamics with time-periodic volatility coefficients.Received: December 2003, Mathematics Subject Classification (2000): 91B70, 60F05, 60H30JEL Classification: C13, G13Jean-Pierre Fouque: Work partially supported by NSF grant DMS-0071744.Ronnie Sircar: Work supported by NSF grant DMS-0090067. We are grateful to Peter Thurston for research assistance.We thank a referee for his/her comments which improved the paper.  相似文献   

2.
The rough Bergomi model, introduced by Bayer et al. [Quant. Finance, 2016, 16(6), 887–904], is one of the recent rough volatility models that are consistent with the stylised fact of implied volatility surfaces being essentially time-invariant, and are able to capture the term structure of skew observed in equity markets. In the absence of analytical European option pricing methods for the model, we focus on reducing the runtime-adjusted variance of Monte Carlo implied volatilities, thereby contributing to the model’s calibration by simulation. We employ a novel composition of variance reduction methods, immediately applicable to any conditionally log-normal stochastic volatility model. Assuming one targets implied volatility estimates with a given degree of confidence, thus calibration RMSE, the results we demonstrate equate to significant runtime reductions—roughly 20 times on average, across different correlation regimes.  相似文献   

3.
In recent years, there has been a remarkable growth of volatility options. In particular, VIX options are among the most actively trading contracts at Chicago Board Options Exchange. These options exhibit upward sloping volatility skew and the shape of the skew is largely independent of the volatility level. To take into account these stylized facts, this article introduces a novel two-factor stochastic volatility model with mean reversion that accounts for stochastic skew consistent with empirical evidence. Importantly, the model is analytically tractable. In this sense, I solve the pricing problem corresponding to standard-start, as well as to forward-start European options through the Fast Fourier Transform. To illustrate the practical performance of the model, I calibrate the model parameters to the quoted prices of European options on the VIX index. The calibration results are fairly good indicating the ability of the model to capture the shape of the implied volatility skew associated with VIX options.  相似文献   

4.
We analyze the implied volatility skews generated by displaced lognormal diffusions. In particular, we prove the global monotonicity of implied volatility, and an at-the-money bound on the steepness of downward volatility skews, under displaced lognormal dynamics, which therefore cannot reproduce some features observed in equity markets. A variant, the displaced anti-lognormal, overcomes the steepness constraint, but its state space is bounded above and unbounded below. In light of these limitations on what features the displaced (anti-)lognormal (DL) can model, we exploit the DL, not as a model, but as a control variate, to reduce variance in Monte Carlo simulations of the CEV and SABR local/stochastic volatility models. For either use—as model, or as control variate—the DL’s parameters require estimation. We find an explicit formula for the DL’s short-expiry limiting volatility skew, which allows direct calibration of its parameters to volatility skews implied by market data or by other models.  相似文献   

5.
This study examines several alternative symmetric and asymmetric model specifications of regression-based deterministic volatility models to identify the one that best characterizes the implied volatility functions of S&P 500 Index options in the period 1996–2009. We find that estimating the models with nonlinear least squares, instead of ordinary least squares, always results in lower pricing errors in both in- and out-of-sample comparisons. In-sample, asymmetric models of the moneyness ratio estimated separately on calls and puts provide the overall best performance. However, separating calls from puts violates the put-call-parity and leads to severe model mis-specification problems. Out-of-sample, symmetric models that use the logarithmic transformation of the strike price are the overall best ones. The lowest out-of-sample pricing errors are observed when implied volatility models are estimated consistently to the put-call-parity using the joint data set of out-of-the-money options. The out-of-sample pricing performance of the overall best model is shown to be resilient to extreme market conditions and compares quite favorably with continuous-time option pricing models that admit stochastic volatility and random jump risk factors.  相似文献   

6.
Recent empirical studies suggest that the volatilities associated with financial time series exhibit short-range correlations. This entails that the volatility process is very rough and its autocorrelation exhibits sharp decay at the origin. Another classic stylistic feature often assumed for the volatility is that it is mean reverting. In this paper it is shown that the price impact of a rapidly mean reverting rough volatility model coincides with that associated with fast mean reverting Markov stochastic volatility models. This reconciles the empirical observation of rough volatility paths with the good fit of the implied volatility surface to models of fast mean reverting Markov volatilities. Moreover, the result conforms with recent numerical results regarding rough stochastic volatility models. It extends the scope of models for which the asymptotic results of fast mean reverting Markov volatilities are valid. The paper concludes with a general discussion of fractional volatility asymptotics and their interrelation. The regimes discussed there include fast and slow volatility factors with strong or small volatility fluctuations and with the limits not commuting in general. The notion of a characteristic term structure exponent is introduced, this exponent governs the implied volatility term structure in the various asymptotic regimes.  相似文献   

7.
In practice, the choice of using a local volatility model or a stochastic volatility model is made according to their respective ability to fit implied volatility surfaces. In this paper, we adopt a different point of view. Indeed, using a purely statistical methodology, we design new procedures aiming at testing the assumption of a local volatility model for the price dynamics, against the alternative of a stochastic volatility model. These test procedures are based only on historical data and do not require any calibration procedures via option prices. We also provide a convincing simulation study and an empirical analysis on future contracts on interest rates.  相似文献   

8.
The rough Bergomi model introduced by Bayer et al. [Quant. Finance, 2015, 1–18] has been outperforming conventional Markovian stochastic volatility models by reproducing implied volatility smiles in a very realistic manner, in particular for short maturities. We investigate here the dynamics of the VIX and the forward variance curve generated by this model, and develop efficient pricing algorithms for VIX futures and options. We further analyse the validity of the rough Bergomi model to jointly describe the VIX and the SPX, and present a joint calibration algorithm based on the hybrid scheme by Bennedsen et al. [Finance Stoch., forthcoming].  相似文献   

9.
In this paper, we propose an approximation method based on the Wiener–Ito chaos expansion for the pricing of European contingent claims. Our method is applicable to widely used option pricing models such as local volatility models, stochastic volatility models and their combinations. This method is useful in practice since the resulting approximation formula is not computationally expensive, hence it is suitable for calibration purposes. We will show through some numerical examples that our approximation remains quite good even for the long maturity and/or the high volatility cases, which is a desired feature. As an example, we propose a hybrid volatility model and apply our approximation formula to the JPY/USD currency option market obtaining very accurate results.  相似文献   

10.
We treat the problem of option pricing under a stochastic volatility model that exhibits long-range dependence. We model the price process as a Geometric Brownian Motion with volatility evolving as a fractional Ornstein–Uhlenbeck process. We assume that the model has long-memory, thus the memory parameter H in the volatility is greater than 0.5. Although the price process evolves in continuous time, the reality is that observations can only be collected in discrete time. Using historical stock price information we adapt an interacting particle stochastic filtering algorithm to estimate the stochastic volatility empirical distribution. In order to deal with the pricing problem we construct a multinomial recombining tree using sampled values of the volatility from the stochastic volatility empirical measure. Moreover, we describe how to estimate the parameters of our model, including the long-memory parameter of the fractional Brownian motion that drives the volatility process using an implied method. Finally, we compute option prices on the S&P 500 index and we compare our estimated prices with the market option prices.  相似文献   

11.
We model the volatility of a single risky asset using a multifactor (matrix) Wishart affine process, recently introduced in finance by Gourieroux and Sufana. As in standard Duffie and Kan affine models the pricing problem can be solved through the Fast Fourier Transform of Carr and Madan. A numerical illustration shows that this specification provides a separate fit of the long-term and short-term implied volatility surface and, differently from previous diffusive stochastic volatility models, it is possible to identify a specific factor accounting for the stochastic leverage effect, a well-known stylized fact of the FX option markets analysed by Carr and Wu.  相似文献   

12.
In this paper we study the pricing and hedging of options on realized variance in the 3/2 non-affine stochastic volatility model by developing efficient transform-based pricing methods. This non-affine model gives prices of options on realized variance that allow upward-sloping implied volatility of variance smiles. Heston's model [Rev. Financial Stud., 1993, 6, 327–343], the benchmark affine stochastic volatility model, leads to downward-sloping volatility of variance smiles—in disagreement with variance markets in practice. Using control variates, we propose a robust method to express the Laplace transform of the variance call function in terms of the Laplace transform of the realized variance. The proposed method works in any model where the Laplace transform of realized variance is available in closed form. Additionally, we apply a new numerical Laplace inversion algorithm that gives fast and accurate prices for options on realized variance, simultaneously at a sequence of variance strikes. The method is also used to derive hedge ratios for options on variance with respect to variance swaps.  相似文献   

13.
We consider the problem of valuing a European option written on an asset whose dynamics are described by an exponential Lévy-type model. In our framework, both the volatility and jump-intensity are allowed to vary stochastically in time through common driving factors—one fast-varying and one slow-varying. Using Fourier analysis we derive an explicit formula for the approximate price of any European-style derivative whose payoff has a generalized Fourier transform; in particular, this includes European calls and puts. From a theoretical perspective, our results extend the class of multiscale stochastic volatility models of Fouque et al. [Multiscale Stochastic Volatility for Equity, Interest Rate, and Credit Derivatives, 2011] to models of the exponential Lévy type. From a financial perspective, the inclusion of jumps and stochastic volatility allow us to capture the term-structure of implied volatility, as demonstrated in a calibration to S&;P500 options data.  相似文献   

14.
Multiscale stochastic volatility models have been developed as an efficient way to capture the principal effects on derivative pricing and portfolio optimization of randomly varying volatility. The recent book by Fouque et al. (Multiscale Stochastic Volatility for Equity, Interest-Rate and Credit Derivatives, 2011) analyzes models in which the volatility of the underlying is driven by two diffusions – one fast mean-reverting and one slowly varying – and provides a first order approximation for European option prices and for the implied volatility surface, which is calibrated to market data. Here, we present the full second order asymptotics, which are considerably more complicated due to a terminal layer near the option expiration time. We find that to second order, the implied volatility approximation depends quadratically on log-moneyness, capturing the convexity of the implied volatility curve seen in data. We introduce a new probabilistic approach to the terminal layer analysis needed for the derivation of the second order singular perturbation term, and calibrate to S&P 500 options data.  相似文献   

15.
We consider an asset allocation problem in a continuous-time model with stochastic volatility and jumps in both the asset price and its volatility. First, we derive the optimal portfolio for an investor with constant relative risk aversion. The demand for jump risk includes a hedging component, which is not present in models without volatility jumps. We further show that the introduction of derivative contracts can have substantial economic value. We also analyze the distribution of terminal wealth for an investor who uses the wrong model, either by ignoring volatility jumps or by falsely including such jumps, or who is subject to estimation risk. Whenever a model different from the true one is used, the terminal wealth distribution exhibits fatter tails and (in some cases) significant default risk.  相似文献   

16.
In this paper we discuss a new approach to extend a class of solvable stochastic volatility models (SVM). Usually, classical SVM adopt a CEV process for instantaneous variance where the CEV parameter γ takes just few values: 0—the Ornstein–Uhlenbeck process, 1/2—the Heston (or square root) process, 1—GARCH, and 3/2—the 3/2 model. Some other models, e.g. with γ = 2 were discovered in Henry-Labordére (Analysis, geometry, and modeling in finance: advanced methods in option pricing. Chapman & Hall/CRC Financial Mathematics Series, London, 2009) by making connection between stochastic volatility and solvable diffusion processes in quantum mechanics. In particular, he used to build a bridge between solvable superpotentials (the Natanzon superpotentials, which allow reduction of a Schrödinger equation to a Gauss confluent hypergeometric equation) and existing SVM. Here we propose some new models with ${\gamma \in \mathbb{R}}$ and demonstrate that using Lie’s symmetries they could be priced in closed form in terms of hypergeometric functions. Thus obtained new models could be useful for pricing volatility derivatives (variance and volatility swaps, moment swaps).  相似文献   

17.
Substantial progress has been made in developing more realistic option pricing models. Empirically, however, it is not known whether and by how much each generalization improves option pricing and hedging. We fill this gap by first deriving an option model that allows volatility, interest rates and jumps to be stochastic. Using S&P 500 options, we examine several alternative models from three perspectives: (1) internal consistency of implied parameters/volatility with relevant time-series data, (2) out-of-sample pricing, and (3) hedging. Overall, incorporating stochastic volatility and jumps is important for pricing and internal consistency. But for hedging, modeling stochastic volatility alone yields the best performance.  相似文献   

18.
One-factor Markov models are widely used by practitioners for pricing financial options. Their simplicity facilitates their calibration to the intial conditions and permits fast computer Implementations. Nevertheless, the danger remains that such models behave unrealistically, if the calibration of the volatility is not properly done. Here, we study a lognormal process and investigate how to specify the volatility constraints in such a way that the term structure of volatility at future times, as implied by the short rate process, has a realistic and stable shape. However, the drifting down of the volatility term structure is unavoidable. As a result, there is a tendency to underestimate option prices.  相似文献   

19.
In this paper we compare the out-of-sample performance of two common extensions of the Black–Scholes option pricing model, namely GARCH and stochastic volatility (SV). We calibrate the three models to intraday FTSE 100 option prices and apply two sets of performance criteria, namely out-of-sample valuation errors and Value-at-Risk (VaR) oriented measures. When we analyze the fit to observed prices, GARCH clearly dominates both SV and the benchmark Black–Scholes model. However, the predictions of the market risk from hypothetical derivative positions show sizable errors. The fit to the realized profits and losses is poor and there are no notable differences between the models. Overall, we therefore observe that the more complex option pricing models can improve on the Black–Scholes methodology only for the purpose of pricing, but not for the VaR forecasts.  相似文献   

20.
We develop a discrete-time stochastic volatility option pricing model exploiting the information contained in the Realized Volatility (RV), which is used as a proxy of the unobservable log-return volatility. We model the RV dynamics by a simple and effective long-memory process, whose parameters can be easily estimated using historical data. Assuming an exponentially affine stochastic discount factor, we obtain a fully analytic change of measure. An empirical analysis of Standard and Poor's 500 index options illustrates that our model outperforms competing time-varying and stochastic volatility option pricing models.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号