首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We address the issue of modelling and forecasting macroeconomic variables using rich datasets by adopting the class of Vector Autoregressive Moving Average (VARMA) models. We overcome the estimation issue that arises with this class of models by implementing an iterative ordinary least squares (IOLS) estimator. We establish the consistency and asymptotic distribution of the estimator for weak and strong VARMA(p,q) models. Monte Carlo results show that IOLS is consistent and feasible for large systems, outperforming the MLE and other linear regression based efficient estimators under alternative scenarios. Our empirical application shows that VARMA models are feasible alternatives when forecasting with many predictors. We show that VARMA models outperform the AR(1), ARMA(1,1), Bayesian VAR, and factor models, considering different model dimensions.  相似文献   

2.
Copulas provide an attractive approach to the construction of multivariate distributions with flexible marginal distributions and different forms of dependences. Of particular importance in many areas is the possibility of forecasting the tail-dependences explicitly. Most of the available approaches are only able to estimate tail-dependences and correlations via nuisance parameters, and cannot be used for either interpretation or forecasting. We propose a general Bayesian approach for modeling and forecasting tail-dependences and correlations as explicit functions of covariates, with the aim of improving the copula forecasting performance. The proposed covariate-dependent copula model also allows for Bayesian variable selection from among the covariates of the marginal models, as well as the copula density. The copulas that we study include the Joe-Clayton copula, the Clayton copula, the Gumbel copula and the Student’s t-copula. Posterior inference is carried out using an efficient MCMC simulation method. Our approach is applied to both simulated data and the S&P 100 and S&P 600 stock indices. The forecasting performance of the proposed approach is compared with those of other modeling strategies based on log predictive scores. A value-at-risk evaluation is also performed for the model comparisons.  相似文献   

3.
Standard selection criteria for forecasting models focus on information that is calculated for each series independently, disregarding the general tendencies and performance of the candidate models. In this paper, we propose a new way to perform statistical model selection and model combination that incorporates the base rates of the candidate forecasting models, which are then revised so that the per-series information is taken into account. We examine two schemes that are based on the precision and sensitivity information from the contingency table of the base rates. We apply our approach on pools of either exponential smoothing or ARMA models, considering both simulated and real time series, and show that our schemes work better than standard statistical benchmarks. We test the significance and sensitivity of our results, discuss the connection of our approach to other cross-learning approaches, and offer insights regarding implications for theory and practice.  相似文献   

4.
In this paper, we propose a Bayesian estimation and forecasting procedure for noncausal autoregressive (AR) models. Specifically, we derive the joint posterior density of the past and future errors and the parameters, yielding predictive densities as a by‐product. We show that the posterior model probabilities provide a convenient model selection criterion in discriminating between alternative causal and noncausal specifications. As an empirical application, we consider US inflation. The posterior probability of noncausality is found to be high—over 98%. Furthermore, the purely noncausal specifications yield more accurate inflation forecasts than alternative causal and noncausal AR models. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

5.
A novel Bayesian method for inference in dynamic regression models is proposed where both the values of the regression coefficients and the importance of the variables are allowed to change over time. We focus on forecasting and so the parsimony of the model is important for good performance. A prior is developed which allows the shrinkage of the regression coefficients to suitably change over time and an efficient Markov chain Monte Carlo method for posterior inference is described. The new method is applied to two forecasting problems in econometrics: equity premium prediction and inflation forecasting. The results show that this method outperforms current competing Bayesian methods.  相似文献   

6.
We develop a Bayesian median autoregressive (BayesMAR) model for time series forecasting. The proposed method utilizes time-varying quantile regression at the median, favorably inheriting the robustness of median regression in contrast to the widely used mean-based methods. Motivated by a working Laplace likelihood approach in Bayesian quantile regression, BayesMAR adopts a parametric model bearing the same structure as autoregressive models by altering the Gaussian error to Laplace, leading to a simple, robust, and interpretable modeling strategy for time series forecasting. We estimate model parameters by Markov chain Monte Carlo. Bayesian model averaging is used to account for model uncertainty, including the uncertainty in the autoregressive order, in addition to a Bayesian model selection approach. The proposed methods are illustrated using simulations and real data applications. An application to U.S. macroeconomic data forecasting shows that BayesMAR leads to favorable and often superior predictive performance compared to the selected mean-based alternatives under various loss functions that encompass both point and probabilistic forecasts. The proposed methods are generic and can be used to complement a rich class of methods that build on autoregressive models.  相似文献   

7.
Mean monthly flows from thirty rivers in North and South America are used to test the short-term forecasting ability of seasonal ARIMA, deseasonalized ARMA, and periodic autoregressive models. The series were split into two sections and models were calibrated to the first portion of the data. The models were then used to generate one-step-ahead forecasts for the second portion of the data. The forecast performance is compared using various measures of accuracy. The results suggest that a periodic autoregressive model, identified by using the partial autocorrelation function, provided the most accurate forecasts  相似文献   

8.
Approximate Bayesian Computation (ABC) has become increasingly prominent as a method for conducting parameter inference in a range of challenging statistical problems, most notably those characterized by an intractable likelihood function. In this paper, we focus on the use of ABC not as a tool for parametric inference, but as a means of generating probabilistic forecasts; or for conducting what we refer to as ‘approximate Bayesian forecasting’. The four key issues explored are: (i) the link between the theoretical behavior of the ABC posterior and that of the ABC-based predictive; (ii) the use of proper scoring rules to measure the (potential) loss of forecast accuracy when using an approximate rather than an exact predictive; (iii) the performance of approximate Bayesian forecasting in state space models; and (iv) the use of forecasting criteria to inform the selection of ABC summaries in empirical settings. The primary finding of the paper is that ABC can provide a computationally efficient means of generating probabilistic forecasts that are nearly identical to those produced by the exact predictive, and in a fraction of the time required to produce predictions via an exact method.  相似文献   

9.
Statistical analysis of autoregressive-moving average (ARMA) models is an important non-standard problem. No classical approach is widely accepted; legitimacy for most classical approaches is based solely on asymptotic grounds, while small sample sizes are common. The only obstacle to the Bayesian approach are designing a structure through which prior information can be incorporated and designing a practical computational method. The objective of this work is to overcome these two obstacles. In addition to the standard results, the Bayesian approach gives a different method of determining the order of the ARMA model, that is (p, q).  相似文献   

10.
We propose new forecast combination schemes for predicting turning points of business cycles. The proposed combination schemes are based on the forecasting performances of a given set of models with the aim to provide better turning point predictions. In particular, we consider predictions generated by autoregressive (AR) and Markov-switching AR models, which are commonly used for business cycle analysis. In order to account for parameter uncertainty we consider a Bayesian approach for both estimation and prediction and compare, in terms of statistical accuracy, the individual models and the combined turning point predictions for the United States and the Euro area business cycles.  相似文献   

11.
Many businesses and industries require accurate forecasts for weekly time series nowadays. However, the forecasting literature does not currently provide easy-to-use, automatic, reproducible and accurate approaches dedicated to this task. We propose a forecasting method in this domain to fill this gap, leveraging state-of-the-art forecasting techniques, such as forecast combination, meta-learning, and global modelling. We consider different meta-learning architectures, algorithms, and base model pools. Based on all considered model variants, we propose to use a stacking approach with lasso regression which optimally combines the forecasts of four base models: a global Recurrent Neural Network (RNN) model, Theta, Trigonometric Box–Cox ARMA Trend Seasonal (TBATS), and Dynamic Harmonic Regression ARIMA (DHR-ARIMA), as it shows the overall best performance across seven experimental weekly datasets on four evaluation metrics. Our proposed method also consistently outperforms a set of benchmarks and state-of-the-art weekly forecasting models by a considerable margin with statistical significance. Our method can produce the most accurate forecasts, in terms of mean sMAPE, for the M4 weekly dataset among all benchmarks and all original competition participants.  相似文献   

12.
This paper introduces a novel meta-learning algorithm for time series forecast model performance prediction. We model the forecast error as a function of time series features calculated from historical time series with an efficient Bayesian multivariate surface regression approach. The minimum predicted forecast error is then used to identify an individual model or a combination of models to produce the final forecasts. It is well known that the performance of most meta-learning models depends on the representativeness of the reference dataset used for training. In such circumstances, we augment the reference dataset with a feature-based time series simulation approach, namely GRATIS, to generate a rich and representative time series collection. The proposed framework is tested using the M4 competition data and is compared against commonly used forecasting approaches. Our approach provides comparable performance to other model selection and combination approaches but at a lower computational cost and a higher degree of interpretability, which is important for supporting decisions. We also provide useful insights regarding which forecasting models are expected to work better for particular types of time series, the intrinsic mechanisms of the meta-learners, and how the forecasting performance is affected by various factors.  相似文献   

13.
This paper outlines an approach to Bayesian semiparametric regression in multiple equation models which can be used to carry out inference in seemingly unrelated regressions or simultaneous equations models with nonparametric components. The approach treats the points on each nonparametric regression line as unknown parameters and uses a prior on the degree of smoothness of each line to ensure valid posterior inference despite the fact that the number of parameters is greater than the number of observations. We develop an empirical Bayesian approach that allows us to estimate the prior smoothing hyperparameters from the data. An advantage of our semiparametric model is that it is written as a seemingly unrelated regressions model with independent normal–Wishart prior. Since this model is a common one, textbook results for posterior inference, model comparison, prediction and posterior computation are immediately available. We use this model in an application involving a two‐equation structural model drawn from the labour and returns to schooling literatures. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

14.
In the framework of I.I.D. sampling, a general class of linear models is analyzed. Incidental parameters are shown to naturally arise in this class of models. More fundamentally, special attention is paid to the high dimensionality of the parameter space. The objective of the paper is to offer a strategy for progressively specifying a model within that class of linear models. By so doing, we aim at displaying the precise role of each assumption, at offering alternatives to unnecessarily restrictive specifications, and, thereby, at improving the robustness of the inference procedures we discuss. Decompositions of the inference process are obtained through a systematic use of (Bayesian) cuts. Maximum Likelihood Estimation and Bayesian Inference are discussed.An objective of the progressive specification is to preserve the computational tractability and the interpretability of the procedures we develop by relying on known properties of the usual multivariate regression model.  相似文献   

15.
This paper compares alternative models of time‐varying volatility on the basis of the accuracy of real‐time point and density forecasts of key macroeconomic time series for the USA. We consider Bayesian autoregressive and vector autoregressive models that incorporate some form of time‐varying volatility, precisely random walk stochastic volatility, stochastic volatility following a stationary AR process, stochastic volatility coupled with fat tails, GARCH and mixture of innovation models. The results show that the AR and VAR specifications with conventional stochastic volatility dominate other volatility specifications, in terms of point forecasting to some degree and density forecasting to a greater degree. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

16.
Zellner (1976) proposed a regression model in which the data vector (or the error vector) is represented as a realization from the multivariate Student t distribution. This model has attracted considerable attention because it seems to broaden the usual Gaussian assumption to allow for heavier-tailed error distributions. A number of results in the literature indicate that the standard inference procedures for the Gaussian model remain appropriate under the broader distributional assumption, leading to claims of robustness of the standard methods. We show that, although mathematically the two models are different, for purposes of statistical inference they are indistinguishable. The empirical implications of the multivariate t model are precisely the same as those of the Gaussian model. Hence the suggestion of a broader distributional representation of the data is spurious, and the claims of robustness are misleading. These conclusions are reached from both frequentist and Bayesian perspectives.  相似文献   

17.
This paper analyses the real-time forecasting performance of the New Keynesian DSGE model of Galí, Smets and Wouters (2012), estimated on euro area data. It investigates the extent to which the inclusion of forecasts of inflation, GDP growth and unemployment by professional forecasters improve the forecasting performance. We consider two approaches for conditioning on such information. Under the “noise” approach, the mean professional forecasts are assumed to be noisy indicators of the rational expectations forecasts implied by the DSGE model. Under the “news” approach, it is assumed that the forecasts reveal the presence of expected future structural shocks in line with those estimated in the past. The forecasts of the DSGE model are compared with those from a Bayesian VAR model, an AR(1) model, a sample mean and a random walk.  相似文献   

18.
We propose a general class of models and a unified Bayesian inference methodology for flexibly estimating the density of a response variable conditional on a possibly high-dimensional set of covariates. Our model is a finite mixture of component models with covariate-dependent mixing weights. The component densities can belong to any parametric family, with each model parameter being a deterministic function of covariates through a link function. Our MCMC methodology allows for Bayesian variable selection among the covariates in the mixture components and in the mixing weights. The model’s parameterization and variable selection prior are chosen to prevent overfitting. We use simulated and real data sets to illustrate the methodology.  相似文献   

19.
In two recent articles, Sims (1988) and Sims and Uhlig (1988/1991) question the value of much of the ongoing literature on unit roots and stochastic trends. They characterize the seeds of this literature as ‘sterile ideas’, the application of nonstationary limit theory as ‘wrongheaded and unenlightening’, and the use of classical methods of inference as ‘unreasonable’ and ‘logically unsound’. They advocate in place of classical methods an explicit Bayesian approach to inference that utilizes a flat prior on the autoregressive coefficient. DeJong and Whiteman adopt a related Bayesian approach in a group of papers (1989a,b,c) that seek to re-evaluate the empirical evidence from historical economic time series. Their results appear to be conclusive in turning around the earlier, influential conclusions of Nelson and Plosser (1982) that most aggregate economic time series have stochastic trends. So far these criticisms of unit root econometrics have gone unanswered; the assertions about the impropriety of classical methods and the superiority of flat prior Bayesian methods have been unchallenged; and the empirical re-evaluation of evidence in support of stochastic trends has been left without comment. This paper breaks that silence and offers a new perspective. We challenge the methods, the assertions, and the conclusions of these articles on the Bayesian analysis of unit roots. Our approach is also Bayesian but we employ what are known in the statistical literature as objective ignorance priors in our analysis. These are developed in the paper to accommodate explicitly time series models in which no stationarity assumption is made. Ignorance priors are intended to represent a state of ignorance about the value of a parameter and in many models are very different from flat priors. We demonstrate that in time series models flat priors do not represent ignorance but are actually informative (sic) precisely because they neglect generically available information about how autoregressive coefficients influence observed time series characteristics. Contrary to their apparent intent, flat priors unwittingly bias inferences towards stationary and i.i.d. alternatives where they do represent ignorance, as in the linear regression model. This bias helps to explain the outcome of the simulation experiments in Sims and Uhlig and some of the empirical results of DeJong and Whiteman. Under both flat priors and ignorance priors this paper derives posterior distributions for the parameters in autoregressive models with a deterministic trend and an arbitrary number of lags. Marginal posterior distributions are obtained by using the Laplace approximation for multivariate integrals along the lines suggested by the author (Phillips, 1983) in some earlier work. The bias towards stationary models that arises from the use of flat priors is shown in our simulations to be substantial; and we conclude that it is unacceptably large in models with a fitted deterministic trend, for which the expected posterior probability of a stochastic trend is found to be negligible even though the true data generating mechanism has a unit root. Under ignorance priors, Bayesian inference is shown to accord more closely with the results of classical methods. An interesting outcome of our simulations and our empirical work is the bimodal Bayesian posterior, which demonstrates that Bayesian confidence sets can be disjoint, just like classical confidence intervals that are based on asymptotic theory. The paper concludes with an empirical application of our Bayesian methodology to the Nelson-Plosser series. Seven of the 14 series show evidence of stochastic trends under ignorance priors, whereas under flat priors on the coefficients all but three of the series appear trend stationary. The latter result corresponds closely with the conclusion reached by DeJong and Whiteman (1989b) (based on truncated flat priors). We argue that the DeJong-Whiteman inferences are biased towards trend stationarity through the use of flat priors on the autoregressive coefficients, and that their inferences for some of the series (especially stock prices) are fragile (i.e. not robust) not only to the prior but also to the lag length chosen in the time series specification.  相似文献   

20.
This paper presents the Bayesian analysis of a general multivariate exponential smoothing model that allows us to forecast time series jointly, subject to correlated random disturbances. The general multivariate model, which can be formulated as a seemingly unrelated regression model, includes the previously studied homogeneous multivariate Holt-Winters’ model as a special case when all of the univariate series share a common structure. MCMC simulation techniques are required in order to approach the non-analytically tractable posterior distribution of the model parameters. The predictive distribution is then estimated using Monte Carlo integration. A Bayesian model selection criterion is introduced into the forecasting scheme for selecting the most adequate multivariate model for describing the behaviour of the time series under study. The forecasting performance of this procedure is tested using some real examples.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号