首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到15条相似文献,搜索用时 0 毫秒
1.
We develop a Bayesian median autoregressive (BayesMAR) model for time series forecasting. The proposed method utilizes time-varying quantile regression at the median, favorably inheriting the robustness of median regression in contrast to the widely used mean-based methods. Motivated by a working Laplace likelihood approach in Bayesian quantile regression, BayesMAR adopts a parametric model bearing the same structure as autoregressive models by altering the Gaussian error to Laplace, leading to a simple, robust, and interpretable modeling strategy for time series forecasting. We estimate model parameters by Markov chain Monte Carlo. Bayesian model averaging is used to account for model uncertainty, including the uncertainty in the autoregressive order, in addition to a Bayesian model selection approach. The proposed methods are illustrated using simulations and real data applications. An application to U.S. macroeconomic data forecasting shows that BayesMAR leads to favorable and often superior predictive performance compared to the selected mean-based alternatives under various loss functions that encompass both point and probabilistic forecasts. The proposed methods are generic and can be used to complement a rich class of methods that build on autoregressive models.  相似文献   

2.
Trends and cycles in economic time series: A Bayesian approach   总被引:1,自引:0,他引:1  
Trends and cyclical components in economic time series are modeled in a Bayesian framework. This enables prior notions about the duration of cycles to be used, while the generalized class of stochastic cycles employed allows the possibility of relatively smooth cycles being extracted. The posterior distributions of such underlying cycles can be very informative for policy makers, particularly with regard to the size and direction of the output gap and potential turning points. From the technical point of view a contribution is made in investigating the most appropriate prior distributions for the parameters in the cyclical components and in developing Markov chain Monte Carlo methods for both univariate and multivariate models. Applications to US macroeconomic series are presented.  相似文献   

3.
Forecasting and turning point predictions in a Bayesian panel VAR model   总被引:2,自引:0,他引:2  
We provide methods for forecasting variables and predicting turning points in panel Bayesian VARs. We specify a flexible model, which accounts for both interdependencies in the cross section and time variations in the parameters. Posterior distributions for the parameters are obtained for hierarchical and for Minnesota-type priors. Formulas for multistep, multiunit point and average forecasts are provided. An application to the problem of forecasting the growth rate of output and of predicting turning points in the G-7 illustrates the approach. A comparison with alternative forecasting methods is also provided.  相似文献   

4.
Markov chain Monte Carlo (MCMC) methods have become a ubiquitous tool in Bayesian analysis. This paper implements MCMC methods for Bayesian analysis of stochastic frontier models using the WinBUGS package, a freely available software. General code for cross-sectional and panel data are presented and various ways of summarizing posterior inference are discussed. Several examples illustrate that analyses with models of genuine practical interest can be performed straightforwardly and model changes are easily implemented. Although WinBUGS may not be that efficient for more complicated models, it does make Bayesian inference with stochastic frontier models easily accessible for applied researchers and its generic structure allows for a lot of flexibility in model specification.   相似文献   

5.
This paper extends the existing fully parametric Bayesian literature on stochastic volatility to allow for more general return distributions. Instead of specifying a particular distribution for the return innovation, nonparametric Bayesian methods are used to flexibly model the skewness and kurtosis of the distribution while the dynamics of volatility continue to be modeled with a parametric structure. Our semiparametric Bayesian approach provides a full characterization of parametric and distributional uncertainty. A Markov chain Monte Carlo sampling approach to estimation is presented with theoretical and computational issues for simulation from the posterior predictive distributions. An empirical example compares the new model to standard parametric stochastic volatility models.  相似文献   

6.
Graphical models provide a powerful and flexible approach to the analysis of complex problems in genetics. While task-specific software may be extremely efficient for any particular analysis, it is often difficult to adapt to new computational challenges. By viewing these genetic applications in a more general framework, many problems can be handled by essentially the same software. This is advantageous in an area where fast methodological development is essential. Once a method has been fully developed and tested, problem-specific software may then be required. The aim of this paper is to illustrate the potential use of a graphical model approach to genetic analyses by taking a very simple and well-understood problem by way of example.  相似文献   

7.
A new version of the local scale model of Shephard (1994) is presented. Its features are identically distributed evolution equation disturbances, the incorporation of in-the-mean effects, and the incorporation of variance regressors. A Bayesian posterior simulator and a new simulation smoother are presented. The model is applied to publicly available daily exchange rate and asset return series, and is compared with t-GARCH and Lognormal stochastic volatility formulations using Bayes factors.  相似文献   

8.
There exists a common belief among researchers and regional policy makers that the actual central system of Aeropuertos Españoles y Navegación Aérea (AENA) should be changed to one more decentralized where airport managers could have more autonomy. The main objective of this article is to evaluate the efficiency of the Spanish airports using Markov chain Monte Carlo (MCMC) simulation to estimate a stochastic frontier analysis (SFA) model. Our results show the existence of a significant level of inefficiency in airport operations. Additionally, we provide efficient marginal cost estimates for each airport which also cast some doubts about the current pricing practices.  相似文献   

9.
Abstract

This article considers autoregressive (SAR) models. We method to estimate the parameters of likelihood (ML) method. Our Bayesian by the Monte Carlo studies. We found the efficient as the ML estimators.  相似文献   

10.
This paper proposes two types of stochastic correlation structures for Multivariate Stochastic Volatility (MSV) models, namely the constant correlation (CC) MSV and dynamic correlation (DC) MSV models, from which the stochastic covariance structures can easily be obtained. Both structures can be used for purposes of determining optimal portfolio and risk management strategies through the use of correlation matrices, and for calculating Value-at-Risk (VaR) forecasts and optimal capital charges under the Basel Accord through the use of covariance matrices. A technique is developed to estimate the DC MSV model using the Markov Chain Monte Carlo (MCMC) procedure, and simulated data show that the estimation method works well. Various multivariate conditional volatility and MSV models are compared via simulation, including an evaluation of alternative VaR estimators. The DC MSV model is also estimated using three sets of empirical data, namely Nikkei 225 Index, Hang Seng Index and Straits Times Index returns, and significant dynamic correlations are found. The Dynamic Conditional Correlation (DCC) model is also estimated, and is found to be far less sensitive to the covariation in the shocks to the indexes. The correlation process for the DCC model also appears to have a unit root, and hence constant conditional correlations in the long run. In contrast, the estimates arising from the DC MSV model indicate that the dynamic correlation process is stationary.  相似文献   

11.
This paper analyzes the productivity of farms across 370 municipalities in the Center-West region of Brazil. A stochastic frontier model with a latent spatial structure is proposed to account for possible unknown geographical variation of the outputs. The paper compares versions of the model that include the latent spatial effect in the mean of output or as a variable that conditions the distribution of inefficiency, include or not observed municipal variables, and specify independent normal or conditional autoregressive priors for the spatial effects. The Bayesian paradigm is used to estimate the proposed models. As the resultant posterior distributions do not have a closed form, stochastic simulation techniques are used to obtain samples from them. Two model comparison criteria provide support for including the latent spatial effects, even after considering covariates at the municipal level. Models that ignore the latent spatial effects produce significantly different rankings of inefficiencies across agents.
Alexandra M. SchmidtEmail: URL: www.dme.ufrj.br/∼alex
  相似文献   

12.
We develop methods for analysing the 'interaction' or dependence between points in a spatial point pattern, when the pattern is spatially inhomogeneous. Completely non-parametric study of interactions is possible using an analogue of the K -function. Alternatively one may assume a semi-parametric model in which a (parametrically specified) homogeneous Markov point process is subjected to (non-parametric) inhomogeneous independent thinning. The effectiveness of these approaches is tested on datasets representing the positions of trees in forests.  相似文献   

13.
Effective linkage detection and gene mapping requires analysis of data jointly on members of extended pedigrees, jointly at multiple genetic markers. Exact likelihood computation is then often infeasible, but Markov chain Monte Carlo (MCMC) methods permit estimation of posterior probabilities of genome sharing among relatives, conditional upon marker data. In principle, MCMC also permits estimation of linkage analysis location score curves, but in practice effective MCMC samplers are hard to find. Although the whole-meiosis Gibbs sampler (M-sampler) performs well in some cases, for extended pedigrees and tightly linked markers better samplers are needed. However, using the M-sampler as a proposal distribution in a Metropolis-Hastings algorithm does allow genetic interference to be incorporated into the analysis.  相似文献   

14.
This paper is concerned with the Bayesian estimation and comparison of flexible, high dimensional multivariate time series models with time varying correlations. The model proposed and considered here combines features of the classical factor model with that of the heavy tailed univariate stochastic volatility model. A unified analysis of the model, and its special cases, is developed that encompasses estimation, filtering and model choice. The centerpieces of the estimation algorithm (which relies on MCMC methods) are: (1) a reduced blocking scheme for sampling the free elements of the loading matrix and the factors and (2) a special method for sampling the parameters of the univariate SV process. The resulting algorithm is scalable in terms of series and factors and simulation-efficient. Methods for estimating the log-likelihood function and the filtered values of the time-varying volatilities and correlations are also provided. The performance and effectiveness of the inferential methods are extensively tested using simulated data where models up to 50 dimensions and 688 parameters are fit and studied. The performance of our model, in relation to various multivariate GARCH models, is also evaluated using a real data set of weekly returns on a set of 10 international stock indices. We consider the performance along two dimensions: the ability to correctly estimate the conditional covariance matrix of future returns and the unconditional and conditional coverage of the 5% and 1% value-at-risk (VaR) measures of four pre-defined portfolios.  相似文献   

15.
We propose and examine a panel data model for isolating the effect of a treatment, taken once at baseline, from outcomes observed over subsequent time periods. In the model, the treatment intake and outcomes are assumed to be correlated, due to unobserved or unmeasured confounders. Intake is partly determined by a set of instrumental variables and the confounding on unobservables is modeled in a flexible way, varying both by time and treatment state. Covariate effects are assumed to be subject-specific and potentially correlated with other covariates. Estimation and inference is by Bayesian methods that are implemented by tuned Markov chain Monte Carlo methods. Because our analysis is based on the framework developed by Chib [2004. Analysis of treatment response data without the joint distribution of counterfactuals. Journal of Econometrics, in press], the modeling and estimation does not involve either the unknowable joint distribution of the potential outcomes or the missing counterfactuals. The problem of model choice through marginal likelihoods and Bayes factors is also considered. The methods are illustrated in simulation experiments and in an application dealing with the effect of participation in high school athletics on future labor market earnings.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号