首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This paper extends the cross-sectionally augmented panel unit root test (CIPSCIPS) proposed by Pesaran (2007) to the case of a multifactor error structure, and proposes a new panel unit root test based on a simple average of cross-sectionally augmented Sargan–Bhargava statistics (CSBCSB). The basic idea is to exploit information regarding the mm unobserved factors that are shared by kk observed time series in addition to the series under consideration. Initially, we develop the tests assuming that m0m0, the true number of factors, is known and show that the limit distribution of the tests does not depend on any nuisance parameters, so long as k≥m0−1km01. Small sample properties of the tests are investigated by Monte Carlo experiments and are shown to be satisfactory. Particularly, the proposed CIPSCIPS and CSBCSB tests have the correct size for all   combinations of the cross section (NN) and time series (TT) dimensions considered. The power of both tests rises with NN and TT, although the CSBCSB test performs better than the CIPSCIPS test for smaller sample sizes. The various testing procedures are illustrated with empirical applications to real interest rates and real equity prices across countries.  相似文献   

2.
3.
In this paper we consider the issue of unit root testing in cross-sectionally dependent panels. We consider panels that may be characterized by various forms of cross-sectional dependence including (but not exclusive to) the popular common factor framework. We consider block bootstrap versions of the group-mean (Im et al., 2003) and the pooled (Levin et al., 2002) unit root coefficient DF tests for panel data, originally proposed for a setting of no cross-sectional dependence beyond a common time effect. The tests, suited for testing for unit roots in the observed data, can be easily implemented as no specification or estimation of the dependence structure is required. Asymptotic properties of the tests are derived for T going to infinity and N finite. Asymptotic validity of the bootstrap tests is established in very general settings, including the presence of common factors and cointegration across units. Properties under the alternative hypothesis are also considered. In a Monte Carlo simulation, the bootstrap tests are found to have rejection frequencies that are much closer to nominal size than the rejection frequencies for the corresponding asymptotic tests. The power properties of the bootstrap tests appear to be similar to those of the asymptotic tests.  相似文献   

4.
    
In this article, we investigate the validity of the univariate autoregressive sieve bootstrap applied to time series panels characterized by general forms of cross‐sectional dependence, including but not restricted to cointegration. Using the final equations approach we show that while it is possible to write such a panel as a collection of infinite order autoregressive equations, the innovations of these equations are not vector white noise. This causes the univariate autoregressive sieve bootstrap to be invalid in such panels. We illustrate this result with a small numerical example using a simple DGP for which the sieve bootstrap is invalid, and show that the extent of the invalidity depends on the value of specific parameters. We also show that Monte Carlo simulations in small samples can be misleading about the validity of the univariate autoregressive sieve bootstrap. The results in this article serve as a warning about the practical use of the autoregressive sieve bootstrap in panels where cross‐sectional dependence of general form may be present.  相似文献   

5.
    
The inverse normal method, which is used to combine P‐values from a series of statistical tests, requires independence of single test statistics in order to obtain asymptotic normality of the joint test statistic. The paper discusses the modification by Hartung (1999, Biometrical Journal, Vol. 41, pp. 849–855) , which is designed to allow for a certain correlation matrix of the transformed P‐values. First, the modified inverse normal method is shown here to be valid with more general correlation matrices. Secondly, a necessary and sufficient condition for (asymptotic) normality is provided, using the copula approach. Thirdly, applications to panels of cross‐correlated time series, stationary as well as integrated, are considered. The behaviour of the modified inverse normal method is quantified by means of Monte Carlo experiments.  相似文献   

6.
    
This paper considers a spatial panel data regression model with serial correlation on each spatial unit over time as well as spatial dependence between the spatial units at each point in time. In addition, the model allows for heterogeneity across the spatial units using random effects. The paper then derives several Lagrange multiplier tests for this panel data regression model including a joint test for serial correlation, spatial autocorrelation and random effects. These tests draw upon two strands of earlier work. The first is the LM tests for the spatial error correlation model discussed in Anselin and Bera [1998. Spatial dependence in linear regression models with an introduction to spatial econometrics. In: Ullah, A., Giles, D.E.A. (Eds.), Handbook of Applied Economic Statistics. Marcel Dekker, New York] and in the panel data context by Baltagi et al. [2003. Testing panel data regression models with spatial error correlation. Journal of Econometrics 117, 123–150]. The second is the LM tests for the error component panel data model with serial correlation derived by Baltagi and Li [1995. Testing AR(1) against MA(1) disturbances in an error component model. Journal of Econometrics 68, 133–151]. Hence, the joint LM test derived in this paper encompasses those derived in both strands of earlier works. In fact, in the context of our general model, the earlier LM tests become marginal LM tests that ignore either serial correlation over time or spatial error correlation. The paper then derives conditional LM and LR tests that do not ignore these correlations and contrast them with their marginal LM and LR counterparts. The small sample performance of these tests is investigated using Monte Carlo experiments. As expected, ignoring any correlation when it is significant can lead to misleading inference.  相似文献   

7.
    
The bootstrap discrepancy measures the difference in rejection probabilities between a bootstrap test and one based on the true distribution. The order of magnitude of the bootstrap discrepancy is the same under the null hypothesis and under non-null processes described by Pitman drift. If the test statistic is not an exact pivot, critical values depend on which data-generating process (DGP) is used to determine the null distribution. We propose using the DGP which minimizes the bootstrap discrepancy. We also show that, under an asymptotic independence condition, the power of both bootstrap and asymptotic tests can be estimated cheaply by simulation.  相似文献   

8.
    
This paper analyzes the properties of subsampling, hybrid subsampling, and size-correction methods in two non-regular models. The latter two procedures are introduced in Andrews and Guggenberger (2009a). The models are non-regular in the sense that the test statistics of interest exhibit a discontinuity in their limit distribution as a function of a parameter in the model. The first model is a linear instrumental variables (IV) model with possibly weak IVs estimated using two-stage least squares (2SLS). In this case, the discontinuity occurs when the concentration parameter is zero. The second model is a linear regression model in which the parameter of interest may be near a boundary. In this case, the discontinuity occurs when the parameter is on the boundary.  相似文献   

9.
This paper analyzes the properties of a class of estimators, tests, and confidence sets (CSs) when the parameters are not identified in parts of the parameter space. Specifically, we consider estimator criterion functions that are sample averages and are smooth functions of a parameter θθ. This includes log likelihood, quasi-log likelihood, and least squares criterion functions.  相似文献   

10.
This paper develops methods of inference for nonparametric and semiparametric parameters defined by conditional moment inequalities and/or equalities. The parameters need not be identified. Confidence sets and tests are introduced. The correct uniform asymptotic size of these procedures is established. The false coverage probabilities and power of the CS’s and tests are established for fixed alternatives and some local alternatives. Finite-sample simulation results are given for a nonparametric conditional quantile model with censoring and a nonparametric conditional treatment effect model. The recommended CS/test uses a Cramér–von-Mises-type test statistic and employs a generalized moment selection critical value.  相似文献   

11.
    
In this article, we analysed data from the National Education Longitudinal Study to investigate whether experiencing parental divorce during adolescence had an adverse impact on students’ performance on standardized tests. To account for the potential endogeneity of parental divorce we employed double and triple difference models that rely on observing teenagers from intact and divorced backgrounds before and after the divorce occurs. We found that parental divorce does not negatively affect teenagers’ cognitive skills. Our results also suggest that cross‐sectional estimates overstate the detrimental effect of parental divorce.  相似文献   

12.
GMM estimators have poor finite sample properties in highly overidentified models. With many moment conditions the optimal weighting matrix is poorly estimated. We suggest using principal components of the weighting matrix. This effectively drops some of the moment conditions. Our simulations, done in the context of the dynamic panel data model, show that the resulting GMM estimator has better finite sample properties than the usual two-step GMM estimator, in the sense of smaller bias and more reliable standard errors.  相似文献   

13.
This paper studies the problem of disentangling risk correlation and contagion in a set of individual binary processes. The two admissible values correspond to bad and good risk states of an individual. The risk correlation is captured by introducing a dynamic frailty, whereas the contagion passes through the effect of the lagged number of individuals in the bad risk state. We study carefully the dynamic properties of the joint process. Then, we focus on the limiting case of large populations (portfolios). The difficulty to identify risk correlation and contagion in finite samples is illustrated by means of Monte-Carlo simulations.  相似文献   

14.
This paper considers Maximum Likelihood (ML) based estimation and inference procedures for linear dynamic panel data models with fixed effects.  相似文献   

15.
    
The size properties of a two-stage test in a panel data model are investigated where in the first stage a Hausman (1978) specification test is used as a pretest of the random effects specification and in the second stage, a simple hypothesis about a component of the parameter vector is tested, using a tt-statistic that is based on either the random effects or the fixed effects estimator depending on the outcome of the Hausman pretest. It is shown that the asymptotic size of the two-stage test equals 1 for empirically relevant specifications of the parameter space. The size distortion is caused mainly by the poor power properties of the pretest. Given these results, we recommend using a tt-statistic based on the fixed effects estimator instead of the two-stage procedure.  相似文献   

16.
We investigate the estimation and inference in difference in difference econometric models used in the analysis of treatment effects. When the innovations in such models display serial correlation, commonly used ordinary least squares (OLS) procedures are inefficient and may lead to tests with incorrect size. Implementation of feasible generalized least squares (FGLS) procedures is often hindered by too few observations in the cross-section to allow for unrestricted estimation of the weight matrix without leading to tests with similar size distortions as conventional OLS based procedures. We analyze the small sample properties of FGLS based tests with a formal higher order Edgeworth expansion that allows us to construct a size corrected version of the test. We also address the question of optimal temporal aggregation as a method to reduce the dimension of the weight matrix. We apply our procedure to data on regulation of mobile telephone service prices. We find that a size corrected FGLS based test outperforms tests based on OLS.  相似文献   

17.
    
We consider the problem of testing for seasonal unit roots in monthly panel data. To this aim, we generalize the quarterly cross‐sectionally augmented Hylleberg–Engle–Granger–Yoo (CHEGY) test to the monthly case. This parametric test is contrasted with a new non‐parametric test, which is the panel counterpart to the univariate record unit–root seasonal (RURS) test that relies on counting extrema in time series. All methods are applied to an empirical data set on tourism in Austrian provinces. The power properties of the tests are evaluated in simulation experiments that are tuned to the tourism data.  相似文献   

18.
We consider the issue of cross-sectional aggregation in nonstationary and heterogeneous panels where each unit cointegrates. We derive asymptotic properties of the aggregate estimate, and necessary and sufficient conditions for cointegration to hold in the aggregate relationship. We then analyze the case when cointegration does not carry through the aggregation process, and we investigate whether the violation of the formal conditions for perfect aggregation can still lead to an aggregate equation that is observationally equivalent to a cointegrated relationship. We derive a measure of the degree of noncointegration of the aggregate relationship and we explore its asymptotic properties. We propose a valid bootstrap approximation of the test. A Monte Carlo exercise evaluates size and power properties of the bootstrap test.  相似文献   

19.
We consider pseudo-panel data models constructed from repeated cross sections in which the number of individuals per group is large relative to the number of groups and time periods. First, we show that, when time-invariant group fixed effects are neglected, the OLS estimator does not converge in probability to a constant but rather to a random variable. Second, we show that, while the fixed-effects (FE) estimator is consistent, the usual t statistic is not asymptotically normally distributed, and we propose a new robust t statistic whose asymptotic distribution is standard normal. Third, we propose efficient GMM estimators using the orthogonality conditions implied by grouping and we provide t tests that are valid even in the presence of time-invariant group effects. Our Monte Carlo results show that the proposed GMM estimator is more precise than the FE estimator and that our new t test has good size and is powerful.  相似文献   

20.
    
In this paper, we extend the heterogeneous panel data stationarity test of Hadri [Econometrics Journal, Vol. 3 (2000) pp. 148–161] to the cases where breaks are taken into account. Four models with different patterns of breaks under the null hypothesis are specified. Two of the models have been already proposed by Carrion‐i‐Silvestre et al. [Econometrics Journal, Vol. 8 (2005) pp. 159–175]. The moments of the statistics corresponding to the four models are derived in closed form via characteristic functions. We also provide the exact moments of a modified statistic that do not asymptotically depend on the location of the break point under the null hypothesis. The cases where the break point is unknown are also considered. For the model with breaks in the level and no time trend and for the model with breaks in the level and in the time trend, Carrion‐i‐Silvestre et al. [Econometrics Journal, Vol. 8 (2005) pp. 159–175] showed that the number of breaks and their positions may be allowed to differ across individuals for cases with known and unknown breaks. Their results can easily be extended to the proposed modified statistic. The asymptotic distributions of all the statistics proposed are derived under the null hypothesis and are shown to be normally distributed. We show by simulations that our suggested tests have in general good performance in finite samples except the modified test. In an empirical application to the consumer prices of 22 OECD countries during the period from 1953 to 2003, we found evidence of stationarity once a structural break and cross‐sectional dependence are accommodated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号