首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到6条相似文献,搜索用时 0 毫秒
1.
2.
This work presents key insights on the model development strategies used in our cross-learning-based retail demand forecast framework. The proposed framework outperforms state-of-the-art univariate models in the time series forecasting literature. It has achieved 17th position in the accuracy track of the M5 forecasting competition, which is among the top 1% of solutions.  相似文献   

3.
H. Toutenburg  Shalabh 《Metrika》2002,54(3):247-259
This article considers a linear regression model with some missing observations on the response variable and presents two estimators of regression coefficients employing the approach of minimum risk estimation. Small disturbance asymptotic properties of these estimators along with the traditional unbiased estimator are analyzed and conditions, that are easy to check in practice, for the superiority of one estimator over the other are derived. Received May 2001  相似文献   

4.
This paper considers a continuous three-phase polynomial regression model with two threshold points for dependent data with heteroscedasticity. We assume the model is polynomial of order zero in the middle regime, and is polynomial of higher orders elsewhere. We denote this model by 2 $$ {\mathcal{M}}_2 $$ , which includes models with one or no threshold points, denoted by 1 $$ {\mathcal{M}}_1 $$ and 0 $$ {\mathcal{M}}_0 $$ , respectively, as special cases. We provide an ordered iterative least squares (OiLS) method when estimating 2 $$ {\mathcal{M}}_2 $$ and establish the consistency of the OiLS estimators under mild conditions. When the underlying model is 1 $$ {\mathcal{M}}_1 $$ and is ( d 0 1 ) $$ \left({d}_0-1\right) $$ th-order differentiable but not d 0 $$ {d}_0 $$ th-order differentiable at the threshold point, we further show the O p ( N 1 / ( d 0 + 2 ) ) $$ {O}_p\left({N}^{-1/\left({d}_0+2\right)}\right) $$ convergence rate of the OiLS estimators, which can be faster than the O p ( N 1 / ( 2 d 0 ) ) $$ {O}_p\left({N}^{-1/\left(2{d}_0\right)}\right) $$ convergence rate given in Feder when d 0 3 $$ {d}_0\ge 3 $$ . We also apply a model-selection procedure for selecting κ $$ {\mathcal{M}}_{\kappa } $$ ; κ = 0 , 1 , 2 $$ \kappa =0,1,2 $$ . When the underlying model exists, we establish the selection consistency under the aforementioned conditions. Finally, we conduct simulation experiments to demonstrate the finite-sample performance of our asymptotic results.  相似文献   

5.
This paper studies the properties of the solution to the heterogeneous agents model in Den Haan et al. [2009. Computational suite of models with heterogeneous agents: incomplete markets and aggregate uncertainty. Journal of Economic Dynamics and Control, this issue]. To solve for the individual policy rules, we use an Euler-equation method iterating on a grid of pre-specified points. To compute the aggregate law of motion, we use the stochastic-simulation approach of Krusell and Smith [1998. Income and wealth heterogeneity in the macroeconomy. Journal of Political Economy 106, 868–896]. We also compare the stochastic- and non-stochastic-simulation versions of the Krusell–Smith algorithm, and we find that the two versions are similar in terms of their speed and accuracy.  相似文献   

6.
Likelihoods and posteriors of instrumental variable (IV) regression models with strong endogeneity and/or weak instruments may exhibit rather non-elliptical contours in the parameter space. This may seriously affect inference based on Bayesian credible sets. When approximating posterior probabilities and marginal densities using Monte Carlo integration methods like importance sampling or Markov chain Monte Carlo procedures the speed of the algorithm and the quality of the results greatly depend on the choice of the importance or candidate density. Such a density has to be ‘close’ to the target density in order to yield accurate results with numerically efficient sampling. For this purpose we introduce neural networks which seem to be natural importance or candidate densities, as they have a universal approximation property and are easy to sample from. A key step in the proposed class of methods is the construction of a neural network that approximates the target density. The methods are tested on a set of illustrative IV regression models. The results indicate the possible usefulness of the neural network approach.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号