共查询到20条相似文献,搜索用时 0 毫秒
1.
The use of a small number of underlying factors to summarize the information from a much larger set of information variables is one of the new frontiers in forecasting. In prior work, the estimated factors have not usually had a structural interpretation and the factors have not been chosen on a theoretical basis. In this paper we propose several variants of a general structural factor forecasting model, and use these to forecast certain key macroeconomic variables. We make the choice of factors more structurally meaningful by estimating factors from subsets of information variables, where these variables can be assigned to subsets on the basis of economic theory. We compare the forecasting performance of the structural factor forecasting model with that of a univariate AR model, a standard VAR model, and some non-structural factor forecasting models. The results suggest that our structural factor forecasting model performs significantly better in forecasting real activity variables, especially at short horizons. 相似文献
2.
This paper suggests a novel inhomogeneous Markov switching approach for the probabilistic forecasting of industrial companies’ electricity loads, for which the load switches at random times between production and standby regimes. The model that we propose describes the transitions between the regimes using a hidden Markov chain with time-varying transition probabilities that depend on calendar variables. We model the demand during the production regime using an autoregressive moving-average (ARMA) process with seasonal patterns, whereas we use a much simpler model for the standby regime in order to reduce the complexity. The maximum likelihood estimation of the parameters is implemented using a differential evolution algorithm. Using the continuous ranked probability score (CRPS) to evaluate the goodness-of-fit of our model for probabilistic forecasting, it is shown that this model often outperforms classical additive time series models, as well as homogeneous Markov switching models. We also propose a simple procedure for classifying load profiles into those with and without regime-switching behaviors. 相似文献
3.
《International Journal of Forecasting》2023,39(3):1253-1271
Market liberalization and the expansion of variable renewable energy sources in power systems have made the dynamics of electricity prices more uncertain, leading them to show high volatility with sudden, unexpected price spikes. Thus, developing more accurate price modeling and forecasting techniques is a challenge for all market participants and regulatory authorities. This paper proposes a forecasting approach based on using auction data to fit supply and demand electricity curves. More specifically, we fit linear (LinX-Model) and logistic (LogX-Model) curves to historical sale and purchase bidding data from the Iberian electricity market to estimate structural parameters from 2015 to 2019. Then we use time series models on structural parameters to predict day-ahead prices. Our results provide a solid framework for forecasting electricity prices by capturing the structural characteristics of markets. 相似文献
4.
We review the results of six forecasting competitions based on the online data science platform Kaggle, which have been largely overlooked by the forecasting community. In contrast to the M competitions, the competitions reviewed in this study feature daily and weekly time series with exogenous variables, business hierarchy information, or both. Furthermore, the Kaggle data sets all exhibit higher entropy than the M3 and M4 competitions, and they are intermittent.In this review, we confirm the conclusion of the M4 competition that ensemble models using cross-learning tend to outperform local time series models and that gradient boosted decision trees and neural networks are strong forecast methods. Moreover, we present insights regarding the use of external information and validation strategies, and discuss the impacts of data characteristics on the choice of statistics or machine learning methods. Based on these insights, we construct nine ex-ante hypotheses for the outcome of the M5 competition to allow empirical validation of our findings. 相似文献
5.
Forecast combinations of computational intelligence and linear models for the NN5 time series forecasting competition 总被引:1,自引:0,他引:1
Robert R. AndrawisAuthor Vitae Hisham El-ShishinyAuthor Vitae 《International Journal of Forecasting》2011,27(3):672
In this work we introduce the forecasting model with which we participated in the NN5 forecasting competition (the forecasting of 111 time series representing daily cash withdrawal amounts at ATM machines). The main idea of this model is to utilize the concept of forecast combination, which has proven to be an effective methodology in the forecasting literature. In the proposed system we attempted to follow a principled approach, and make use of some of the guidelines and concepts that are known in the forecasting literature to lead to superior performance. For example, we considered various previous comparison studies and time series competitions as guidance in determining which individual forecasting models to test (for possible inclusion in the forecast combination system). The final model ended up consisting of neural networks, Gaussian process regression, and linear models, combined by simple average. We also paid extra attention to the seasonality aspect, decomposing the seasonality into weekly (which is the strongest one), day of the month, and month of the year seasonality. 相似文献
6.
《International Journal of Forecasting》2023,39(2):884-900
We extend neural basis expansion analysis (NBEATS) to incorporate exogenous factors. The resulting method, called NBEATSx, improves on a well-performing deep learning model, extending its capabilities by including exogenous variables and allowing it to integrate multiple sources of useful information. To showcase the utility of the NBEATSx model, we conduct a comprehensive study of its application to electricity price forecasting tasks across a broad range of years and markets. We observe state-of-the-art performance, significantly improving the forecast accuracy by nearly 20% over the original NBEATS model, and by up to 5% over other well-established statistical and machine learning methods specialized for these tasks. Additionally, the proposed neural network has an interpretable configuration that can structurally decompose time series, visualizing the relative impact of trend and seasonal components and revealing the modeled processes’ interactions with exogenous factors. To assist related work, we made the code available in a dedicated repository. 相似文献
7.
《International Journal of Forecasting》2022,38(2):635-647
Near-term forecasts, also called nowcasts, are most challenging but also most important when the economy experiences an abrupt change. In this paper, we explore the performance of models with different information sets and data structures in order to best nowcast US initial unemployment claims in spring of 2020 in the midst of the COVID-19 pandemic. We show that the best model, particularly near the structural break in claims, is a state-level panel model that includes dummy variables to capture the variation in timing of state-of-emergency declarations. Autoregressive models perform poorly at first but catch up relatively quickly. The state-level panel model, exploiting the variation in timing of state-of-emergency declarations, also performs better than models including Google Trends. Our results suggest that in times of structural change there is a bias–variance tradeoff. Early on, simple approaches to exploit relevant information in the cross sectional dimension improve forecasts, but in later periods the efficiency of autoregressive models dominates. 相似文献
8.
《International Journal of Forecasting》2022,38(1):339-351
This paper proposes a three-step approach to forecasting time series of electricity consumption at different levels of household aggregation. These series are linked by hierarchical constraints—global consumption is the sum of regional consumption, for example. First, benchmark forecasts are generated for all series using generalized additive models. Second, for each series, the aggregation algorithm ML-Poly, introduced by Gaillard, Stoltz, and van Erven in 2014, finds an optimal linear combination of the benchmarks. Finally, the forecasts are projected onto a coherent subspace to ensure that the final forecasts satisfy the hierarchical constraints. By minimizing a regret criterion, we show that the aggregation and projection steps improve the root mean square error of the forecasts. Our approach is tested on household electricity consumption data; experimental results suggest that successive aggregation and projection steps improve the benchmark forecasts at different levels of household aggregation. 相似文献
9.
《International Journal of Forecasting》2019,35(3):1060-1071
We explore the ability of core inflation to predict headline CPI annual inflation for a sample of eight developing economies in Latin America over the period January 1995–May 2017. Our in-sample and out-of-sample results are roughly consistent in providing robust evidence of predictability in four of the countries in our sample. Mixed evidence is found for the other four countries. The bulk of the out-of-sample evidence of predictability concentrates on the short horizons of one and six months. In contrast, at the longest horizon of 24 months, we only find out-of-sample evidence of predictability for two countries: Chile and Colombia, with robust results only for the latter. This is both important and challenging, given that the monetary authorities in our sample of developing countries are currently implementing or are taking steps toward the future implementation of inflation targeting regimes, which are based heavily on long-run inflation forecasts. 相似文献
10.
This paper applies a large data set, consisting of 167 monthly time series for the UK, both economic and financial, to simulate out-of-sample predictions of industrial production, inflation, 3-month Treasury Bills, and other variables. Fifteen dynamic factor models that allow forecasting based on large panels of time series are considered. The performances of these factor models are then compared to the following competing models: a simple univariate autoregressive, a vector autoregressive, a leading indicator, and a Phillips curve models. The results show that the best dynamic factor models outperform the competing models in forecasting at 6-, 12-, and 24-month horizons. Thus, the financial markets may have predictive power for the economic activity. This can be a useful tool for central banks and financial institutions, which may use the factor models to construct leading indicators of the economic conditions. In addition, researchers can see a strategic application of factor models. 相似文献
11.
《International Journal of Forecasting》2020,36(3):851-872
This paper estimates a three-frequency dynamic factor model for nowcasting the Canadian provincial gross domestic product (GDP). The Canadian provincial GDP at market prices is released by Statistics Canada annually with a significant lag (11 months). This necessitates a mixed-frequency approach that can process timely monthly data, the quarterly national accounts, and the annual target variable. The model is estimated on a wide set of provincial, national and international data. In a pseudo real-time exercise, we find that the model outperforms simple benchmarks and is competitive with more sophisticated mixed-frequency approaches (MIDAS models). We also find that variables from the Labour Force Survey are important predictors of real activity. This paper expands previous work that has documented the importance of foreign variables for nowcasting Canadian GDP. This paper finds that including national and foreign predictors is useful for Ontario, while worsening the nowcast performance for smaller provinces. 相似文献
12.
I compare the forecasts of returns from the mean predictor (optimal under MSE), with the pseudo-optimal and optimal predictor for an asymmetric loss function under the assumption that agents have an asymmetric LINLIN loss function. The results strongly suggest not using the conditional mean predictor under conditions of asymmetry. In general, forecasts can be improved by the use of optimal predictor rather than the pseudo-optimal predictor, suggesting that the loss reduction from using the optimal predictor can actually be important for practitioners as well. 相似文献
13.
Combination of long term and short term forecasts, with application to tourism demand forecasting 总被引:5,自引:0,他引:5
Forecast combination is a well-established and well-tested approach for improving the forecasting accuracy. One beneficial strategy is to use constituent forecasts that have diverse information. In this paper we consider the idea of diversity being accomplished by using different time aggregations. For example, we could create a yearly time series from a monthly time series and produce forecasts for both, then combine the forecasts. These forecasts would each be tracking the dynamics of different time scales, and would therefore add diverse types of information. A comparison of several forecast combination methods, performed in the context of this setup, shows that this is indeed a beneficial strategy and generally provides a forecasting performance that is better than the performances of the individual forecasts that are combined.As a case study, we consider the problem of forecasting monthly tourism numbers for inbound tourism to Egypt. Specifically, we consider 33 individual source countries, as well as the aggregate. The novel combination strategy also produces a generally improved forecasting accuracy. 相似文献
14.
Bootstrap prediction intervals for SETAR models 总被引:1,自引:0,他引:1
Jing Li 《International Journal of Forecasting》2011,27(2):320
This paper considers four methods for obtaining bootstrap prediction intervals (BPIs) for the self-exciting threshold autoregressive (SETAR) model. Method 1 ignores the sampling variability of the threshold parameter estimator. Method 2 corrects the finite sample biases of the autoregressive coefficient estimators before constructing BPIs. Method 3 takes into account the sampling variability of both the autoregressive coefficient estimators and the threshold parameter estimator. Method 4 resamples the residuals in each regime separately. A Monte Carlo experiment shows that (1) accounting for the sampling variability of the threshold parameter estimator is necessary, despite its super-consistency; (2) correcting the small-sample biases of the autoregressive parameter estimators improves the small-sample properties of bootstrap prediction intervals under certain circumstances; and (3) the two-sample bootstrap can improve the long-term forecasts when the error terms are regime-dependent. 相似文献
15.
Philip Hans FransesAuthor Vitae Henk C. KranendonkAuthor VitaeDebby LanserAuthor Vitae 《International Journal of Forecasting》2011,27(2):482
The Netherlands Bureau for Economic Policy Analysis (CPB) uses a large macroeconomic model to create forecasts of various important macroeconomic variables. The outcomes of this model are usually filtered by experts, and it is the expert forecasts that are made available to the general public. In this paper we re-create the model forecasts for the period 1997-2008 and compare the expert forecasts with the pure model forecasts. Our key findings from the first time that this unique database has been analyzed are that (i) experts adjust upwards more often; (ii) expert adjustments are not autocorrelated, but their sizes do depend on the value of the model forecast; (iii) the CPB model forecasts are biased for a range of variables, but (iv) at the same time, the associated expert forecasts are more often unbiased; and that (v) expert forecasts are far more accurate than the model forecasts, particularly when the forecast horizon is short. In summary, the final CPB forecasts de-bias the model forecasts and lead to higher accuracies than the initial model forecasts. 相似文献
16.
《International Journal of Forecasting》2023,39(3):1424-1447
Global forecasting models (GFMs) that are trained across a set of multiple time series have shown superior results in many forecasting competitions and real-world applications compared with univariate forecasting approaches. One aspect of the popularity of statistical forecasting models such as ETS and ARIMA is their relative simplicity and interpretability (in terms of relevant lags, trend, seasonality, and other attributes), while GFMs typically lack interpretability, especially relating to particular time series. This reduces the trust and confidence of stakeholders when making decisions based on the forecasts without being able to understand the predictions. To mitigate this problem, we propose a novel local model-agnostic interpretability approach to explain the forecasts from GFMs. We train simpler univariate surrogate models that are considered interpretable (e.g., ETS) on the predictions of the GFM on samples within a neighbourhood that we obtain through bootstrapping, or straightforwardly as the one-step-ahead global black-box model forecasts of the time series which needs to be explained. After, we evaluate the explanations for the forecasts of the global models in both qualitative and quantitative aspects such as accuracy, fidelity, stability, and comprehensibility, and are able to show the benefits of our approach. 相似文献
17.
《International Journal of Forecasting》2023,39(3):1333-1350
In this paper, we define forecast (in)stability in terms of the variability in forecasts for a specific time period caused by updating the forecast for this time period when new observations become available, i.e., as time passes. We propose an extension to the state-of-the-art N-BEATS deep learning architecture for the univariate time series point forecasting problem. The extension allows us to optimize forecasts from both a traditional forecast accuracy perspective as well as a forecast stability perspective. We show that the proposed extension results in forecasts that are more stable without leading to a deterioration in forecast accuracy for the M3 and M4 data sets. Moreover, our experimental study shows that it is possible to improve both forecast accuracy and stability compared to the original N-BEATS architecture, indicating that including a forecast instability component in the loss function can be used as regularization mechanism. 相似文献
18.
《International Journal of Forecasting》2019,35(4):1748-1769
Recent research has found that macroeconomic survey forecasts of uncertainty exhibit several deficiencies, such as horizon-dependent biases and lower levels of accuracy than simple unconditional uncertainty forecasts. We examine the inflation uncertainty forecasts from the Bank of England, the Banco Central do Brasil, the Magyar Nemzeti Bank and the Sveriges Riksbank to assess whether central banks’ uncertainty forecasts might be subject to similar problems. We find that, while most central banks’ uncertainty forecasts also tend to be underconfident at short horizons and overconfident at longer horizons, they are mostly not significantly biased. Moreover, they tend to be at least as precise as unconditional uncertainty forecasts from two different approaches. 相似文献
19.
This paper explores the relationship between institutional change and forecast accuracy via an analysis of the entitlement caseload forecasting process in Washington State. This research extends the politics of forecasting literature beyond the current area of government revenue forecasting to include expenditure forecasting and introduces an in-depth longitudinal study to the existing set of cross-sectional studies. Employing a fixed-effects model and ordinary least squares regression analysis, this paper concludes that the establishment of an independent forecasting agency and subsequent formation of technical workgroups improve forecast accuracy. Additionally, this study finds that more frequent forecast revisions and structured domain knowledge improve forecast accuracy. 相似文献
20.
《International Journal of Forecasting》2019,35(3):910-926
We develop a methodology for constructing robust combinations of time series forecast models which improve upon a given benchmark specification for all symmetric and convex loss functions. Under standard regularity conditions, the optimal forecast combination asymptotically almost surely dominates the benchmark, and also optimizes the chosen goal function. The optimum in a given sample can be found by solving a convex optimization problem. An application to the forecasting of changes in the S&P 500 volatility index shows that robust optimized combinations improve significantly upon the out-of-sample forecasting accuracy of both simple averaging and unrestricted optimization. 相似文献