首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 267 毫秒
1.
    
This study aims to explain price movements in the two largest cryptocurrencies that represent the majority of cryptocurrency market capitalization—Bitcoin and Ethereum. A VAR‐GARCH‐BEKK model is estimated to analyze how Google search interest, number of tweets and active addresses on the blockchain impact prices of Bitcoin and Ethereum over time. We find solid evidence that the amount of active addresses is the most significant variable among others influencing price movements in Bitcoin and Ethereum. Based on spillover effects and GIRFs, Google searches and tweets, to a certain extent, have impacts on the Bitcoin and Ethereum prices, but the impacts are weaker than that of active addresses in terms of magnitude and significance.  相似文献   

2.
In this paper we test whether the key metals prices of gold and platinum significantly improve inflation forecasts for the South African economy. We also test whether controlling for conditional correlations in a dynamic setup, using bivariate Bayesian-Dynamic Conditional Correlation (B-DCC) models, improves inflation forecasts. To achieve this we compare out-of-sample forecast estimates of the B-DCC model to Random Walk, Autoregressive and Bayesian VAR models. We find that for both the BVAR and BDCC models, improving point forecasts of the Autoregressive model of inflation remains an elusive exercise. This, we argue, is of less importance relative to the more informative density forecasts. For this we find improved forecasts of inflation for the B-DCC models at all forecasting horizons tested. We thus conclude that including metals price series as inputs to inflation models leads to improved density forecasts, while controlling for the dynamic relationship between the included price series and inflation similarly leads to significantly improved density forecasts.  相似文献   

3.
    
We use a dynamic modeling and selection approach for studying the informational content of various macroeconomic, monetary, and demographic fundamentals for forecasting house-price growth in the six largest countries of the European Monetary Union. The approach accounts for model uncertainty and model instability. We find superior performance compared to various alternative forecasting models. Plots of cumulative forecast errors visualize the superior performance of our approach, particularly after the recent financial crisis.  相似文献   

4.
    
This paper studies the behavior of cryptocurrencies’ financial time series, of which Bitcoin is the most prominent example. The dynamics of these series are quite complex, displaying extreme observations, asymmetries, and several nonlinear characteristics that are difficult to model and forecast. We develop a new dynamic model that is able to account for long memory and asymmetries in the volatility process, as well as for the presence of time-varying skewness and kurtosis. The empirical application, carried out on 606 cryptocurrencies, indicates that a robust filter for the volatility of cryptocurrencies is strongly required. Forecasting results show that the inclusion of time-varying skewness systematically improves volatility, density, and quantile predictions at different horizons.  相似文献   

5.
Looking ahead thirty years is a difficult task, but is not impossible. In this paper we illustrate how to evaluate such long-term forecasts. Long-term forecasting is likely to be dominated by trend curves, particularly the simple linear and exponential trends. However, there will certainly be breaks in their parameter values at some unknown points, so that eventually the forecasts will be unsatisfactory. We investigate whether or not simple methods of long-run forecasting can ever be successful, after one takes into account the uncertainty level associated with the forecasts.  相似文献   

6.
This paper examines the relationship between investor fear in the cryptocurrency market and Bitcoin prices by considering the potential effects of the ongoing COVID-19 pandemic during the period of May 5, 2018 and December 10, 2020. The existence of structural changes in the time series for the full sample reveals a non-constant causality between fear sentiment and Bitcoin prices, which leads us to apply a bootstrap rolling window Granger causality test. Our results show that both negative and positive interactions between fear sentiment and Bitcoin prices occur during several subperiods. The nature of these interactions changes significantly before and during the pandemic. Thus, we contribute to the fast-growing literature on the financial effects of the COVID-19 global pandemic, as well as to the debate on whether to classify Bitcoin as a new asset, speculative investment, currency, or safe haven asset.  相似文献   

7.
This paper presents empirical evidence on how judgmental adjustments affect the accuracy of macroeconomic density forecasts. Judgment is defined as the difference between professional forecasters’ densities and the forecast densities from statistical models. Using entropic tilting, we evaluate whether judgments about the mean, variance and skew improve the accuracy of density forecasts for UK output growth and inflation. We find that not all judgmental adjustments help. Judgments about point forecasts tend to improve density forecast accuracy at short horizons and at times of heightened macroeconomic uncertainty. Judgments about the variance hinder at short horizons, but can improve tail risk forecasts at longer horizons. Judgments about skew in general take value away, with gains seen only for longer horizon output growth forecasts when statistical models took longer to learn that downside risks had reduced with the end of the Great Recession. Overall, density forecasts from statistical models prove hard to beat.  相似文献   

8.
A small-scale vector autoregression (VAR) is used to shed some light on the roles of extreme shocks and non-linearities during stress events observed in the economy. The model focuses on the link between credit/financial markets and the real economy and is estimated on US quarterly data for the period 1984–2013. Extreme shocks are accounted for by assuming t-distributed reduced-form shocks. Non-linearity is allowed by the possibility of regime switch in the shock propagation mechanism. Strong evidence for fat tails in error distributions is found. Moreover, the results suggest that accounting for extreme shocks rather than explicit modeling of non-linearity contributes to the explanatory power of the model. Finally, it is shown that the accuracy of density forecasts improves if non-linearities and shock distributions with fat tails are considered.  相似文献   

9.
    
We propose a novel mixed-frequency dynamic factor model with time-varying parameters and stochastic volatility for macroeconomic nowcasting and develop a fast estimation algorithm. This enables us to generate forecast densities based on a large space of factor models. We apply our framework to nowcast US GDP growth in real time. Our results reveal that stochastic volatility seems to improve the accuracy of point forecasts the most, compared to the constant-parameter factor model. These gains are most prominent during unstable periods such as the Covid-19 pandemic. Finally, we highlight indicators driving the US GDP growth forecasts and associated downside risks in real time.  相似文献   

10.
This paper builds an innovative composite world trade-cycle index by means of a dynamic factor model for short-term forecasts of world trade growth of both goods and (usually neglected) services. Trade indicators are selected using a multidimensional approach, including Bayesian model averaging techniques, dynamic correlations, and Granger non-causality tests in a linear vector autoregression framework. To overcome real-time forecasting challenges, the dynamic factor model is extended to account for mixed frequencies, to deal with asynchronous data publication, and to include hard and survey data along with leading indicators. Nonlinearities are addressed with a Markov switching model. Pseudo-real-time empirical simulations suggest that: (i) the global trade index is a useful tool for tracking and forecasting world trade in real time; (ii) the model is able to infer global trade cycles very precisely and better than several competing alternatives; and (iii) global trade finance conditions seem to lead the trade cycle, a conclusion that is in line with the theoretical literature.  相似文献   

11.
At the end of 2017, the Bitcoin price dropped significantly by approximately 70% over the two months. Since the introduction of Bitcoin futures coincided with this market crash, it is said that the new financial instrument might have caused the market crash. The literature states that the futures enabled investors to easily take a short position and hypothesizes that the selling pressure from futures could have potentially crashed the Bitcoin market. To evaluate this assumption, we investigate the empirical relationship between futures trading and the Bitcoin price by using high-frequency data. We find that Bitcoin futures trading was not significantly related to the returns on Bitcoin futures and spot returns. Therefore, we conclude that Bitcoin futures did not lead to the crash of the Bitcoin market at the end of 2017.  相似文献   

12.
    
  相似文献   

13.
    
We investigate how sensitive developed and emerging equity markets are to volatility dynamics of Bitcoin during tranquil, bear, and bull market regimes. Intraday price fluctuations of Bitcoin are represented by three measures of realized volatility, viz. total variance, upside semivariance, and downside semivariance. Our empirical analysis relies on a quantile regression framework, after orthogonalizing raw returns with respect to an array of relevant global factors and accounting for structural shifts in the series. The results suggest that developed-market returns are positively related to the realized variance proxy across various market conditions, while emerging-market returns are positively (negatively) correlated with realized variance during bear (normal and bull) market periods. The upside (downside) component of realized variance has a negative (positive) influence on returns of either market category, and the dependence structure is highly asymmetric across the return distribution. Additionally, we document that developed and emerging markets are more sensitive to downside volatility than to upside volatility when they enter tranquil or bull territory. Our results offer practical implications for policymakers and investors.  相似文献   

14.
Inspired by cross-market information flows among international stock markets, we incorporate external predictive information from other cryptocurrency markets to forecast the realized volatility (RV) of Bitcoin. To make the most of such external information, we employ six widely accepted approaches to construct predictive models based on multivariate information. Our results suggest that the scaled principal component analysis (SPCA) approach steadily improves the predictive ability of the prevailing heterogeneous autoregressive (HAR) benchmark model considering both the model confidence set (MCS) test and the Diebold–Mariano (DM) test based on three widely accepted loss functions. The forecasting performance is persistent to various robustness checks and extensions. Notably, a mean–variance investor can obtain steady positive economic gains if the investment portfolio is constructed on the basis of the forecasts from the HAR-SPCA model. The results of this study show that external predictive information is statistically and economically important in forecasting Bitcoin RV.  相似文献   

15.
1998年住房制度改革以来,房屋销售价格和租金均呈上涨趋势,但两者在增速上有明显的不同。本文基于动态Gordon模型,用一阶向量自回归的方法研究了8个城市房地产市场预期和非预期的房价租金比,结果表明向量自回归模型预测杭州、深圳、武汉、成都、北京的对数房价租金比效果较好,上海的房价租金比最不容易预测。未预料到的房价租金比的决定有明显的地区差异,西部地区的城市主要受租金流新信息的影响,长三角城市受收益率新信息的影响非常大,其他地区的城市主要受收益率新信息的影响。  相似文献   

16.
    
This paper presents a Bayesian model averaging regression framework for forecasting US inflation, in which the set of predictors included in the model is automatically selected from a large pool of potential predictors and the set of regressors is allowed to change over time. Using real‐time data on the 1960–2011 period, this model is applied to forecast personal consumption expenditures and gross domestic product deflator inflation. The results of this forecasting exercise show that, although it is not able to beat a simple random‐walk model in terms of point forecasts, it does produce superior density forecasts compared with a range of alternative forecasting models. Moreover, a sensitivity analysis shows that the forecasting results are relatively insensitive to prior choices and the forecasting performance is not affected by the inclusion of a very large set of potential predictors.  相似文献   

17.
Do professional forecasters have an accurate sense of the uncertainties surrounding their own forecasts? This paper examines forecaster overconfidence by comparing ex ante, surveyed forecaster uncertainty with ex post, realised uncertainty based on the dispersion of an individual’s forecast errors. Unlike the literature that focuses on consensus forecasts, our focus is at the level of the individual forecaster. Using microdata from the three major surveys of professional forecasters (Euro Area, US and UK), we examine real GDP growth forecasts over the period 1999–2015. Our findings show that overconfidence dominates among individual forecasters, particularly for longer forecast horizons, and that individual forecasters appear to have little understanding of their own uncertainty.  相似文献   

18.
    
Predicting the evolution of mortality rates plays a central role for life insurance and pension funds. Various stochastic frameworks have been developed to model mortality patterns by taking into account the main stylized facts driving these patterns. However, relying on the prediction of one specific model can be too restrictive and can lead to some well-documented drawbacks, including model misspecification, parameter uncertainty, and overfitting. To address these issues we first consider mortality modeling in a Bayesian negative-binomial framework to account for overdispersion and the uncertainty about the parameter estimates in a natural and coherent way. Model averaging techniques are then considered as a response to model misspecifications. In this paper, we propose two methods based on leave-future-out validation and compare them to standard Bayesian model averaging (BMA) based on marginal likelihood. An intensive numerical study is carried out over a large range of simulation setups to compare the performances of the proposed methodologies. An illustration is then proposed on real-life mortality datasets, along with a sensitivity analysis to a Covid-type scenario. Overall, we found that both methods based on an out-of-sample criterion outperform the standard BMA approach in terms of prediction performance and robustness.  相似文献   

19.
    
The Global Energy Forecasting Competition 2017 (GEFCom2017) attracted more than 300 students and professionals from over 30 countries for solving hierarchical probabilistic load forecasting problems. Of the series of global energy forecasting competitions that have been held, GEFCom2017 is the most challenging one to date: the first one to have a qualifying match, the first one to use hierarchical data with more than two levels, the first one to allow the usage of external data sources, the first one to ask for real-time ex-ante forecasts, and the longest one. This paper introduces the qualifying and final matches of GEFCom2017, summarizes the top-ranked methods, publishes the data used in the competition, and presents several reflections on the competition series and a vision for future energy forecasting competitions.  相似文献   

20.
    
We construct a real-time dataset (FRED-SD) with vintage data for the U.S. states that can be used to forecast both state-level and national-level variables. Our dataset includes approximately 28 variables per state, including labor-market, production, and housing variables. We conduct two sets of real-time forecasting exercises. The first forecasts state-level labor-market variables using five different models and different levels of industrially disaggregated data. The second forecasts a national-level variable exploiting the cross-section of state data. The state-forecasting experiments suggest that large models with industrially disaggregated data tend to have higher predictive ability for industrially diversified states. For national-level data, we find that forecasting and aggregating state-level data can outperform a random walk but not an autoregression. We compare these real-time data experiments with forecasting experiments using final-vintage data and find very different results. Because these final-vintage results are obtained with revised data that would not have been available at the time the forecasts would have been made, we conclude that the use of real-time data is essential for drawing proper conclusions about state-level forecasting models.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号