首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
We use a dynamic modeling and selection approach for studying the informational content of various macroeconomic, monetary, and demographic fundamentals for forecasting house-price growth in the six largest countries of the European Monetary Union. The approach accounts for model uncertainty and model instability. We find superior performance compared to various alternative forecasting models. Plots of cumulative forecast errors visualize the superior performance of our approach, particularly after the recent financial crisis.  相似文献   

2.
This paper studies the behavior of cryptocurrencies’ financial time series, of which Bitcoin is the most prominent example. The dynamics of these series are quite complex, displaying extreme observations, asymmetries, and several nonlinear characteristics that are difficult to model and forecast. We develop a new dynamic model that is able to account for long memory and asymmetries in the volatility process, as well as for the presence of time-varying skewness and kurtosis. The empirical application, carried out on 606 cryptocurrencies, indicates that a robust filter for the volatility of cryptocurrencies is strongly required. Forecasting results show that the inclusion of time-varying skewness systematically improves volatility, density, and quantile predictions at different horizons.  相似文献   

3.
This paper presents a Bayesian model averaging regression framework for forecasting US inflation, in which the set of predictors included in the model is automatically selected from a large pool of potential predictors and the set of regressors is allowed to change over time. Using real‐time data on the 1960–2011 period, this model is applied to forecast personal consumption expenditures and gross domestic product deflator inflation. The results of this forecasting exercise show that, although it is not able to beat a simple random‐walk model in terms of point forecasts, it does produce superior density forecasts compared with a range of alternative forecasting models. Moreover, a sensitivity analysis shows that the forecasting results are relatively insensitive to prior choices and the forecasting performance is not affected by the inclusion of a very large set of potential predictors.  相似文献   

4.
We compare several representative sophisticated model averaging and variable selection techniques of forecasting stock returns. When estimated traditionally, our results confirm that the simple combination of individual predictors is superior. However, sophisticated models improve dramatically once we combine them with the historical average and take parameter instability into account. An equal weighted combination of the historical average with the standard multivariate predictive regression estimated using the average windows method, for example, achieves a statistically significant monthly out-of-sample of 1.10% and annual utility gains of 2.34%. We obtain similar gains for predicting future macroeconomic conditions.  相似文献   

5.
This paper applies a Diagonal BEKK model to investigate the risk spillovers of three major cryptocurrencies to ten leading traditional currencies and two gold prices (Spot Gold and Gold Futures). The daily data used are from 7 August 2015 to 15 June 2020. The dataset is analyzed in its entirety and is also subdivided into four distinct subsets in order to study and compare the patterns of spillover effects during economic turmoil, such as the 2018 cryptocurrency crash and the COVID-19 pandemic. The results reveal significant co-volatility spillover effects between cryptocurrency and traditional currency or gold markets, especially during the whole sample period and amid the uncertainty raised by COVID-19. The capabilities of cryptocurrency are time-varying and related to economic uncertainty or shocks. There are significant differences between normal and extreme markets with regard to the capabilities of cryptocurrency as a diversifier, a hedge or a safe haven. We find the significant co-volatility spillover effects are asymmetric in most cases especially during the COVID-19 pandemic period, which means the negative return shocks have larger impacts on co-volatility than positive return shocks of the same magnitude. Evidently, cryptocurrencies and traditional currencies or gold can be incorporated into financial portfolios for financial market participants who seek effective risk management and also for optimal dynamic hedging purposes against economic turmoil and downward movements.  相似文献   

6.
In this paper we test whether the key metals prices of gold and platinum significantly improve inflation forecasts for the South African economy. We also test whether controlling for conditional correlations in a dynamic setup, using bivariate Bayesian-Dynamic Conditional Correlation (B-DCC) models, improves inflation forecasts. To achieve this we compare out-of-sample forecast estimates of the B-DCC model to Random Walk, Autoregressive and Bayesian VAR models. We find that for both the BVAR and BDCC models, improving point forecasts of the Autoregressive model of inflation remains an elusive exercise. This, we argue, is of less importance relative to the more informative density forecasts. For this we find improved forecasts of inflation for the B-DCC models at all forecasting horizons tested. We thus conclude that including metals price series as inputs to inflation models leads to improved density forecasts, while controlling for the dynamic relationship between the included price series and inflation similarly leads to significantly improved density forecasts.  相似文献   

7.
8.
Forecasting and turning point predictions in a Bayesian panel VAR model   总被引:2,自引:0,他引:2  
We provide methods for forecasting variables and predicting turning points in panel Bayesian VARs. We specify a flexible model, which accounts for both interdependencies in the cross section and time variations in the parameters. Posterior distributions for the parameters are obtained for hierarchical and for Minnesota-type priors. Formulas for multistep, multiunit point and average forecasts are provided. An application to the problem of forecasting the growth rate of output and of predicting turning points in the G-7 illustrates the approach. A comparison with alternative forecasting methods is also provided.  相似文献   

9.
This paper introduces a combination of asymmetry and extreme volatility effects in order to build superior extensions of the GARCH-MIDAS model for modeling and forecasting the stock volatility. Our in-sample results clearly verify that extreme shocks have a significant impact on the stock volatility and that the volatility can be influenced more by the asymmetry effect than by the extreme volatility effect in both the long and short term. Out-of-sample results with several robustness checks demonstrate that our proposed models can achieve better performances in forecasting the volatility. Furthermore, the improvement in predictive ability is attributed more strongly to the introduction of asymmetry and extreme volatility effects for the short-term volatility component.  相似文献   

10.
Long-term predictions are indispensable for planning and strategy. Yet little is known about their value, their limitations or the most appropriate way of making and using them. This paper examines these issues and proposes two approaches to long-term forecasting while illustrating their use to planning and strategy. The first approach consists of identifying and extrapolating critical long-term trends while assessing their impact on society and firms. The second approach studies the analogy of the industrial and information revolutions and the specific consequences of the industrial revolution's five most important inventions in terms of the consequences of similar ones of the information revolution. The paper concludes by advocating that much needs to be done to integrate forecasting, on the one hand, and long-term planning and strategy, on the other. The purpose of such integration is to increase the ability of organizations to anticipate important, forthcoming changes, and their consequences, and successfully adapt themselves to these changes as well as the opportunities and dangers associated with them.  相似文献   

11.
Looking ahead thirty years is a difficult task, but is not impossible. In this paper we illustrate how to evaluate such long-term forecasts. Long-term forecasting is likely to be dominated by trend curves, particularly the simple linear and exponential trends. However, there will certainly be breaks in their parameter values at some unknown points, so that eventually the forecasts will be unsatisfactory. We investigate whether or not simple methods of long-run forecasting can ever be successful, after one takes into account the uncertainty level associated with the forecasts.  相似文献   

12.
We propose a novel mixed-frequency dynamic factor model with time-varying parameters and stochastic volatility for macroeconomic nowcasting and develop a fast estimation algorithm. This enables us to generate forecast densities based on a large space of factor models. We apply our framework to nowcast US GDP growth in real time. Our results reveal that stochastic volatility seems to improve the accuracy of point forecasts the most, compared to the constant-parameter factor model. These gains are most prominent during unstable periods such as the Covid-19 pandemic. Finally, we highlight indicators driving the US GDP growth forecasts and associated downside risks in real time.  相似文献   

13.
Predicting the evolution of mortality rates plays a central role for life insurance and pension funds. Various stochastic frameworks have been developed to model mortality patterns by taking into account the main stylized facts driving these patterns. However, relying on the prediction of one specific model can be too restrictive and can lead to some well-documented drawbacks, including model misspecification, parameter uncertainty, and overfitting. To address these issues we first consider mortality modeling in a Bayesian negative-binomial framework to account for overdispersion and the uncertainty about the parameter estimates in a natural and coherent way. Model averaging techniques are then considered as a response to model misspecifications. In this paper, we propose two methods based on leave-future-out validation and compare them to standard Bayesian model averaging (BMA) based on marginal likelihood. An intensive numerical study is carried out over a large range of simulation setups to compare the performances of the proposed methodologies. An illustration is then proposed on real-life mortality datasets, along with a sensitivity analysis to a Covid-type scenario. Overall, we found that both methods based on an out-of-sample criterion outperform the standard BMA approach in terms of prediction performance and robustness.  相似文献   

14.
This paper builds an innovative composite world trade-cycle index by means of a dynamic factor model for short-term forecasts of world trade growth of both goods and (usually neglected) services. Trade indicators are selected using a multidimensional approach, including Bayesian model averaging techniques, dynamic correlations, and Granger non-causality tests in a linear vector autoregression framework. To overcome real-time forecasting challenges, the dynamic factor model is extended to account for mixed frequencies, to deal with asynchronous data publication, and to include hard and survey data along with leading indicators. Nonlinearities are addressed with a Markov switching model. Pseudo-real-time empirical simulations suggest that: (i) the global trade index is a useful tool for tracking and forecasting world trade in real time; (ii) the model is able to infer global trade cycles very precisely and better than several competing alternatives; and (iii) global trade finance conditions seem to lead the trade cycle, a conclusion that is in line with the theoretical literature.  相似文献   

15.
We extend Diebold and Li’s dynamic Nelson-Siegel three-factor model to a broader empirical prospective by including the evaluation of the state space approach and by using nine different ratings for corporate bonds. We find that the dynamic Nelson-Siegel factor AR(1) model outperforms other competitors on the out-of-sample forecast accuracy, especially on the investment-grade bonds for the short-term forecast horizon and on the high-yield bonds for the long-term forecast horizon. The dynamic Nelson-Siegel factor state space model, however, becomes appealing on the high-yield bonds in the short-term forecast horizon, where the factor dynamics are more likely time-varying and parameter instability is more probable in the model specification.  相似文献   

16.
Accurate forecasts of mortality rates are essential to various types of demographic research like population projection, and to the pricing of insurance products such as pensions and annuities. Recent studies have considered a spatial–temporal vector autoregressive (STVAR) model for the mortality surface, where mortality rates of each age depend on the historical values for that age (temporality) and the neighboring cohorts ages (spatiality). This model has sound statistical properties including co-integrated dependent variables, the existence of closed-form solutions and a simple error structure. Despite its improved forecasting performance over the famous Lee–Carter (LC) model, the constraint that only the effects of the same and neighboring cohorts are significant can be too restrictive. In this study, we adopt the concept of hyperbolic memory to the spatial dimension and propose a hyperbolic STVAR (HSTVAR) model. Retaining all desirable features of the STVAR, our model uniformly beats the LC, the weighted functional demographic model, STVAR and sparse VAR counterparties for forecasting accuracy, when French and Spanish mortality data over 1950–2016 are considered. Simulation results also lead to robust conclusions. Long-term forecasting analyses up to 2050 comparing the four models are further performed. To illustrate the extensible feature of HSTVAR to a multi-population case, a two-population illustrative example using the same sample is further presented.  相似文献   

17.
刘莉 《物流技术》2010,29(8):41-42,46
针对灰色预测模型在区域物流中不能有效解决因季节变动而引起的物流需求变化的问题,引入季节指数的概念,构建基于灰色模型和季节指数的物流需求预测模型,并给出了相应的具体实施方案。最后以哈尔滨市物流需求统计数据为例,对所提方法进行了仿真分析,仿真结果表明了该方法的有效性和可行性。  相似文献   

18.
Forecasting economic and financial variables with global VARs   总被引:1,自引:0,他引:1  
This paper considers the problem of forecasting economic and financial variables across a large number of countries in the global economy. To this end a global vector autoregressive (GVAR) model, previously estimated by Dees, di Mauro, Pesaran, and Smith (2007) and Dees, Holly, Pesaran, and Smith (2007) over the period 1979Q1–2003Q4, is used to generate out-of-sample forecasts one and four quarters ahead for real output, inflation, real equity prices, exchange rates and interest rates over the period 2004Q1–2005Q4. Forecasts are obtained for 134 variables from 26 regions, which are made up of 33 countries and cover about 90% of the world output. The forecasts are compared to typical benchmarks: univariate autoregressive and random walk models. Building on the forecast combination literature, the effects of model and estimation uncertainty on forecast outcomes are examined by pooling forecasts obtained from different GVAR models estimated over alternative sample periods. Given the size of the modelling problem, and the heterogeneity of the economies considered–industrialised, emerging, and less developed countries–as well as the very real likelihood of possibly multiple structural breaks, averaging forecasts across both models and windows makes a significant difference. Indeed, the double-averaged GVAR forecasts perform better than the benchmark competitors, especially for output, inflation and real equity prices.  相似文献   

19.
Forecasting cash demands at automatic teller machines (ATMs) is challenging, due to the heteroskedastic nature of such time series. Conventional global learning computational intelligence (CI) models, with their generalized learning behaviors, may not capture the complex dynamics and time-varying characteristics of such real-life time series data efficiently. In this paper, we propose to use a novel local learning model of the pseudo self-evolving cerebellar model articulation controller (PSECMAC) associative memory network to produce accurate forecasts of ATM cash demands. As a computational model of the human cerebellum, our model can incorporate local learning to effectively model the complex dynamics of heteroskedastic time series. We evaluated the forecasting performance of our PSECMAC model against the performances of current established CI and regression models using the NN5 competition dataset of 111 empirical daily ATM cash withdrawal series. The evaluation results show that the forecasting capability of our PSECMAC model exceeds that of the benchmark local and global-learning based models.  相似文献   

20.
This study used hourly data to examine the dynamic conditional correlations and hedging strategies in the main cryptocurrency markets: Bitcoin (BTC), Ethereum (ETH), Litecoin (LTC), and Ripple (XRP). Multivariate generalized autoregressive conditional heteroskedasticity family models provided evidence of significant positive dynamic conditional correlations among these markets. A weaker conditional correlation was observed for the LCT–XRP portfolio than for the BTC–ETH portfolio, which had the highest correlation value. The dynamic correlations intensified after the cryptocurrency crisis. The results of a portfolio risk analysis suggested that investors should hold less BTC than LTC, ETH, and XRP to minimize risk while maintaining consistent expected portfolio returns. Investors should hold less BTC than the other cryptocurrencies during a crisis. In addition, the cheapest hedge strategy is to hold long BTC and short XRP regardless of the period. Holding long BTC and short LTC was found to be the most expensive hedge strategy. Finally, the study showed that an optimally weighted diversified portfolio provides the greatest reduction in risk and downside risk for ETH and LTC. For XRP, portfolio hedging is the best mechanism for reducing risk.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号