首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
  总被引:6,自引:0,他引:6  
The payoff of a barrier option depends on whether or not a specified asset price, index, or rate reaches a specified level during the life of the option. Most models for pricing barrier options assume continuous monitoring of the barrier; under this assumption, the option can often be priced in closed form. Many (if not most) real contracts with barrier provisions specify discrete monitoring instants; there are essentially no formulas for pricing these options, and even numerical pricing is difficult. We show, however, that discrete barrier options can be priced with remarkable accuracy using continuous barrier formulas by applying a simple continuity correction to the barrier. The correction shifts the barrier away from the underlying by a factor of exp(bet sig sqrt dt), where bet approx 0.5826, sig is the underlying volatility, and dt is the time between monitoring instants. The correction is justified both theoretically and experimentally.  相似文献   

2.
We consider Merton's portfolio optimization problem in a Black and Scholes market with non-Gaussian stochastic volatility of Ornstein–Uhlenbeck type. The investor can trade in n stocks and a risk-free bond. We assume that the dependence between stocks lies in that they partly share the Ornstein–Uhlenbeck processes of the volatility. We refer to these as news processes, and interpret this as that dependence between stocks lies solely in their reactions to the same news. The model is primarily intended for assets that are dependent, but not too dependent, such as stocks from different branches of industry. We show that this dependence generates covariance, and give statistical methods for both the fitting and verification of the model to data. Using dynamic programming, we derive and verify explicit trading strategies and Feynman–Kac representations of the value function for power utility.  相似文献   

3.
We provide general results for the dependence structure of running maxima (minima) of sets of variables in a model based on (i) Markov dynamics; (ii) no Granger causality; (iii) cross-section dependence. At the time series level, we derive recursive formulas for running minima and maxima. These formulas enable to use a bootstrapping technique to recursively recover the pricing kernels of barrier options from those of the corresponding European options. We also show that the dependence formulas for running maxima (minima) are completely defined from the copula function representing dependence among levels at the terminal date. The result is applied to multivariate discrete barrier digital products. Barrier Altiplanos are simply priced by (i) bootstrapping the price of univariate barrier products; (ii) evaluating a European Altiplano with these values.  相似文献   

4.
A new method for pricing lookback options (a.k.a. hindsight options) is presented, which simplifies the derivation of analytical formulas for this class of exotics in the Black-Scholes framework. Underlying the method is the observation that a lookback option can be considered as an integrated form of a related barrier option. The integrations with respect to the barrier price are evaluated at the expiry date to derive the payoff of an equivalent portfolio of European-type binary options. The arbitrage-free price of the lookback option can then be evaluated by static replication as the present value of this portfolio. We illustrate the method by deriving expressions for generic, standard floating-, fixed-, and reverse-strike lookbacks, and then show how the method can be used to price the more complex partial-price and partial-time lookback options. The method is in principle applicable to frameworks with alternative asset-price dynamics to the Black-Scholes world.  相似文献   

5.
This paper presents a novel method to price discretely monitored single- and double-barrier options in Lévy process-based models. The method involves a sequential evaluation of Hilbert transforms of the product of the Fourier transform of the value function at the previous barrier monitoring date and the characteristic function of the (Esscher transformed) Lévy process. A discrete approximation with exponentially decaying errors is developed based on the Whittaker cardinal series (Sinc expansion) in Hardy spaces of functions analytic in a strip. An efficient computational algorithm is developed based on the fast Hilbert transform that, in turn, relies on the FFT-based Toeplitz matrix–vector multiplication. Our method also provides a natural framework for credit risk applications, where the firm value follows an exponential Lévy process and default occurs at the first time the firm value is below the default barrier on one of a discrete set of monitoring dates.  相似文献   

6.
    
Recently, advantages of conformal deformations of the contours of integration in pricing formulas for European options have been demonstrated in the context of wide classes of Lévy models, the Heston model, and other affine models. Similar deformations were used in one‐factor Lévy models to price options with barrier and lookback features and credit default swaps (CDSs). In the present paper, we generalize this approach to models, where the dynamics of the assets is modeled as , where X is a Lévy process, and the interest rate is stochastic. Assuming that X and r are independent, and , the infinitesimal generator of the pricing semigroup in the model for the short rate, satisfies weak regularity conditions, which hold for popular models of the short rate, we develop a variation of the pricing procedure for Lévy models which is almost as fast as in the case of the constant interest rate. Numerical examples show that about 0.15 second suffices to calculate prices of 8 options of same maturity in a two‐factor model with the error tolerance and less; in a three‐factor model, accuracy of order 0.001–0.005 is achieved in about 0.2 second. Similar results are obtained for quanto CDS, where an additional stochastic factor is the exchange rate. We suggest a class of Lévy models with the stochastic interest rate driven by 1–3 factors, which allows for fast calculations. This class can satisfy the current regulatory requirements for banks mandating sufficiently sophisticated credit risk models.  相似文献   

7.
  总被引:2,自引:0,他引:2  
It is well known that the price of a European vanilla option computed in a binomial tree model converges toward the Black-Scholes price when the time step tends to zero. Moreover, it has been observed that this convergence is of order 1/ n in usual models and that it is oscillatory. In this paper, we compute this oscillatory behavior using asymptotics of Laplace integrals, giving explicitly the first terms of the asymptotics. This allows us to show that there is no asymptotic expansion in the usual sense, but that the rate of convergence is indeed of order 1/ n in the case of usual binomial models since the second term (in     ) vanishes. The next term is of type   C 2( n )/ n   , with   C 2( n )  some explicit bounded function of n that has no limit when n tends to infinity.  相似文献   

8.
In this paper we consider a Black and Scholes economy and show how the Malliavin calculus approach can be extended to cover hedging of any square integrable contingent claim. As an application we derive the replicating portfolios of some barrier and partial barrier options.  相似文献   

9.
In this paper we develop simulation techniques in order to evaluate single and double barrier options with general features. Our method is based on Sharp Large Deviation estimates, which allow one to improve the usual Monte Carlo procedure. Numerical results are provided and show the validity of the proposed simulation algorithm.  相似文献   

10.
In this paper, we consider the problem of the numerical computation of Greeks for a multidimensional barrier and lookback style options: the payoff function depends in a rather general way on the minima and maxima of the coordinates of the d -dimensional underlying asset process. Using Malliavin calculus techniques, we derive additional weights that enable computation of the Greeks using Monte Carlo simulations. Numerical experiments confirm the efficiency of the method. This work is a multidimensional extension of previous results (see Gobet and Kohatsu-Higa 2001 ).  相似文献   

11.
This article considers the pricing and hedging of barrier options in a market in which call options are liquidly traded and can be used as hedging instruments. This use of call options means that market preferences and beliefs about the future behavior of the underlying assets are in some sense incorporated into the hedge and do not need to be specified exogenously. Thus we are able to find prices for exotic derivatives which are independent of any model for the underlying asset. For example we do not need to assume that the underlying assets follow an exponential Brownian motion.
We find model-independent upper and lower bounds on the prices of knock-in and knock-out puts and calls. If the market prices the barrier options outside these limits then we give simple strategies for generating profits at zero risk. Examples illustrate that the bounds we give can be fairly tight.  相似文献   

12.
    
In this paper, we argue that, once the costs of maintaining the hedging portfolio are properly taken into account, semistatic portfolios should more properly be thought of as separate classes of derivatives, with nontrivial, model‐dependent payoff structures. We derive new integral representations for payoffs of exotic European options in terms of payoffs of vanillas, different from the Carr–Madan representation, and suggest approximations of the idealized static hedging/replicating portfolio using vanillas available in the market. We study the dependence of the hedging error on a model used for pricing and show that the variance of the hedging errors of static hedging portfolios can be sizably larger than the errors of variance‐minimizing portfolios. We explain why the exact semistatic hedging of barrier options is impossible for processes with jumps, and derive general formulas for variance‐minimizing semistatic portfolios. We show that hedging using vanillas only leads to larger errors than hedging using vanillas and first touch digitals. In all cases, efficient calculations of the weights of the hedging portfolios are in the dual space using new efficient numerical methods for calculation of the Wiener–Hopf factors and Laplace–Fourier inversion.  相似文献   

13.
ALTERNATIVE CHARACTERIZATIONS OF AMERICAN PUT OPTIONS   总被引:6,自引:0,他引:6  
We derive alternative representations of the McKean equation for the value of the American put option. Our main result decomposes the value of an American put option into the corresponding European put price and the early exercise premium. We then represent the European put price in a new manner. This representation allows us to alternatively decompose the price of an American put option into its intrinsic value and time value, and to demonstrate the equivalence of our results to the McKean equation.  相似文献   

14.
In this paper, we apply Carr's randomization approximation and the operator form of the Wiener‐Hopf method to double barrier options in continuous time. Each step in the resulting backward induction algorithm is solved using a simple iterative procedure that reduces the problem of pricing options with two barriers to pricing a sequence of certain perpetual contingent claims with first‐touch single barrier features. This procedure admits a clear financial interpretation that can be formulated in the language of embedded options. Our approach results in a fast and accurate pricing method that can be used in a rather wide class of Lévy‐driven models including Variance Gamma processes, Normal Inverse Gaussian processes, KoBoL processes, CGMY model, and Kuznetsov's β ‐class. Our method can be applied to double barrier options with arbitrary bounded terminal payoff functions, which, in particular, allows us to price knock‐out double barrier put/call options as well as double‐no‐touch options.  相似文献   

15.
    
We investigate the valuation of volatility index (VIX) options by developing a model with a self-exciting Hawkes process that allows for clustering in the VIX. In the proposed framework, we find semianalytical expressions for the characteristic function and forward characteristic function, and then we solve the pricing problem of standard-start and forward-start options via the fast Fourier transform. The empirical results provide evidence to support the significance of accounting for volatility clustering when pricing VIX options.  相似文献   

16.
    
We develop two novel approaches to solving for the Laplace transform of a time‐changed stochastic process. We discard the standard assumption that the background process () is Lévy. Maintaining the assumption that the business clock () and the background process are independent, we develop two different series solutions for the Laplace transform of the time‐changed process . In fact, our methods apply not only to Laplace transforms, but more generically to expectations of smooth functions of random time. We apply the methods to introduce stochastic time change to the standard class of default intensity models of credit risk, and show that stochastic time‐change has a very large effect on the pricing of deep out‐of‐the‐money options on credit default swaps.  相似文献   

17.
PRICING AND HEDGING DOUBLE-BARRIER OPTIONS: A PROBABILISTIC APPROACH   总被引:4,自引:0,他引:4  
Barrier options have become increasingly popular over the last few years. Less expensive than standard options, they may provide the appropriate hedge in a number of risk management strategies. In the case of a single-barrier option, the valuation problem is not very difficult (see Merton 1973 and Goldman, Sosin, and Gatto 1979). the situation where the option gets knocked out when the underlying instrument hits either of two well-defined boundaries is less straightforward. Kunitomo and Ikeda (1992) provide a pricing formula expressed as the sum of an infinite series whose convergence is studied through numerical procedures and suggested to be rapid. We follow a methodology which proved quite successful in the case of Asian options (see Geman and Yor 1992,1993) and which has its roots in some fundamental properties of Brownian motion. This methodology permits the derivation of a simple expression of the Laplace transform of the double-barrir price with respect to its maturity date. the inversion of the Laplace transform using techniques developed by Geman and Eydeland (1995), is then fairly easy to perform.  相似文献   

18.
Introduced by Kifer (2000) , game options function in the same way as American options with the added feature that the writer may also choose to exercise, at which time they must pay out the intrinsic option value of that moment plus a penalty. In Kyprianou (2004) an explicit formula was obtained for the value function of the perpetual put option of this type. Crucial to the calculations which lead to the aforementioned formula was the perpetual nature of the option. In this paper we address how to characterize the value function of the finite expiry version of this option via mixtures of other exotic options by using mainly martingale arguments.  相似文献   

19.
    
This paper proposes an accelerated static replication approach for continuous European-style barrier options by employing the repeated Richardson extrapolation technique with the Romberg sequence. This approach is developed under the constant elasticity of variance (CEV) model of Cox (1975) and Cox and Ross (1976) using the framework offered by Derman, Ergener, and Kani (1995; DEK) and its modified method of Chung et al. (2010, 2013a, 2013b) and Tsai (2014). The numerical results indicate that our method could significantly reduce replication errors for European knock-out call options and may be superior to the imposition of the theta-matching condition on the DEK method.  相似文献   

20.
Pricing Discrete European Barrier Options Using Lattice Random Walks   总被引:2,自引:0,他引:2  
Per  Hörfelt 《Mathematical Finance》2003,13(4):503-524
This paper designs a numerical procedure to price discrete European barrier options in Black-Scholes model. The pricing problem is divided into a series of initial value problems, one for each monitoring time. Each initial value problem is solved by replacing the driving Brownian motion by a lattice random walk. Some results from the theory of Besov spaces show that the convergence rate of lattice methods for initial value problems depends on two factors, namely the smoothness of the initial value (or the value function) and the moments for the increments of the lattice random walk. This fact is used to obtain an efficient method to price discrete European barrier options. Numerical examples and comparisons with other methods are carried out to show that the proposed method yields fast and accurate results.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号