首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Understanding the relationship between the rail transit ridership and the built environment is crucial to promoting transit-oriented development and sustainable urban growth. Geographically weighted regression (GWR) models have previously been employed to reveal the spatial differences in such relationships at the station level. However, few studies characterized the built environment at a fine scale and associated them with rail transit usage. Moreover, none of the existing studies attempted to categorize the stations for policy-making considering varying impacts of the built environment. In this study, taking Guangzhou as an example, we integrated multi-source spatial big data, such as high spatial resolution remote sensing images, points of interest (POIs), social media and building footprint data to precisely quantify the characteristics of the built environment. This was combined with a GWR model to understand how the impacts of the fine-scale built environment factors on the rail transit ridership vary across the study region. The k-means clustering method was employed to identify distinct station groups based on the coefficients of the GWR model at the local stations. Policy zoning was proposed based on the results and differentiated planning guidance was suggested for different zones. These recommendations are expected to help increase rail transit usage, inform rail transit planning (to relieve the traffic burden on currently crowed lines), and re-allocate industrial and living facilities to reduce the commute for the residents. The policy and planning implications are crucial for the coordinated development of the rail transit system and land use.  相似文献   

2.
The nature of urban space has long-drawn geographers' interest and David Harvey's conceptual framework of multiple spaces (i.e., absolute, relative, and relational) within cities has been widely adopted and developed. With its high spatial and temporal resolution, geospatial big data plays an increasingly important role in our understanding of urban structure. Taxi trajectory data is particularly useful in travel purpose estimation and allows for more granular insights into urban mobility due to the door-to-door nature of these trips. This article utilizes taxi trajectory data and explores the interaction among absolute space, relative space, and relational space in Harvey's framework using Structural Equation Modeling (SEM). Through an empirical study of Shanghai's downtown area, this paper highlights the importance of Harvey's framework in understanding cities' dynamic structure and argues for changes in urban planning and development to better coordinate land use and travel demand. We find an insignificant relationship between relative and relational space in Shanghai due to a mismatch between urban mobility and the built environment. This mismatch concentrates the transportation flow near the city's core area, transforming the polycentric structure of Shanghai's built environment in absolute space to a single-node structure in relational space. After identifying the contributing factors to this problem in Shanghai, this article suggests combining Harvey's conceptual framework of multiple spaces with geospatial big data to inform planning strategies that address the challenges of rapid urbanization.  相似文献   

3.
Electric scooter (e-scooter) sharing systems (ESSs) have been widely adopted by many cities around the world and have attracted a growing number of users. Although some studies have explored the usage characteristics and effects of the built environment on ESS ridership using one city as an example, few studies have considered multiple cities to obtain generalizable and robust results. To fill this research gap, we collect the ESS trip data of five cities in the U.S., namely Austin, Minneapolis, Kansas City, Louisville, and Portland, and explore the effects of the built environment on ESS ridership after controlling for socioeconomic factors. The temporal distributions of e-scooter ridership of different cities are similar, having a single peak period on weekdays and weekends between 11:30 and 17:30. In terms of spatial distribution, the ESS ridership is higher in universities and urban centers compared to other areas. Multilevel negative binomial model results show that ESS trips are positively correlated with population density, employment density, intersection density, land use mixed entropy, and bus stop density in the census block group. E-scooter ridership is negatively correlated with the median age of the population in the census block group and distance to the city center. The findings in this article can help operators understand the factors that affect the ridership of shared e-scooters, determine the changes in ridership when the built environment changes, and identify high-ridership areas when ESS is implemented in new cities.  相似文献   

4.
Traffic crashes are geographical events, and their spatial patterns are strongly linked to the regional characteristics of road network, sociodemography, and human activities. Different human activities may have different impacts on traffic exposures, traffic conflicts and speeds in different transportation geographic areas, and accordingly generate different traffic safety outcomes. Most previous researches have concentrated on exploring the impacts of various road network attributes and sociodemographic characteristics on crash occurrence. However, the spatial impacts of human activities on traffic crashes are unclear. To fill this gap, this study attempts to investigate how human activities contribute to the spatial pattern of the traffic crashes in urban areas by leveraging multi-source big data. Three kinds of big data sources are used to collect human activities from the New York City. Then, all the collected data are aggregated into regional level (ZIP Code Tabulation Areas). Geographically Weighted Poisson Regression (GWPR) method is applied to identify the relationship between various influencing factors and regional crash frequency. The results reveal that human activity variables from multi-source big data significantly affect the spatial pattern of traffic crashes, which may bring new insights for roadway safety analyses. Comparative analyses are further performed for comparing the GWPR models which consider human activity variables from different big data sources. The results of comparative analyses suggest that multiple big data sources could complement with each other in the coverage of spatial areas and user groups, thereby improving the performance of zone-level crash models and fully unveiling the spatial impacts of human activities on traffic crashes in urban areas. The results of this study could help transportation authorities better identify high-risky regions and develop proactive countermeasures to effectively reduce crashes in these regions.  相似文献   

5.
State and local agencies increasingly recognize the importance of bicycling activity and as the number of riders has grown over the past several years, the agencies are becoming more aware of the need to provide better bicycle infrastructure. This paper proposes a series of empirical models and applies them to the State of Maryland in the United States, using a spatial lag approach to explore land use, built environment, demographic, socio-economic, and traffic condition connections to bicycle ridership, defined as the number of bicycle trips generated by a given analysis zone per day. A set of models is proposed for three land-use typologies: urban, sub-urban and rural. The data that drives this analysis was obtained from a recently conducted Household Travel Survey (HTS) in the Baltimore–Washington region in Maryland. Results show that some land uses, socio-economic and demographic characteristics, and transit accessibility are positively correlated with bicycle ridership. Other types of land use, transport system characteristics and income level have an inverse relationship with bicycle ridership. The contributing factors to bicycle ridership vary with land-use typology. This proposed approach could be used to evaluate factors relevant to bicycle demand. State and local agencies are advised to build designated bicycle paths according to traffic conditions and increase bicycle-parking capacity in specific establishments.  相似文献   

6.
Many countries have implemented public bike systems to promote sustainable public transportation. Despite the rapid development of such systems, few studies have investigated how built environment factors affect the use of public bikes at station level using trip data, taking account of the spatial correlation between nearby stations. Built environment factors are strongly associated with travel demand and play an important role in the success of public bike systems. Using trip data from Zhongshan's public bike system, this paper employed a multiple linear regression model to examine the influence of built environment variables on trip demand as well as on the ratio of demand to supply (D/S) at bike stations. It also considered the spatial correlations of PBS usage between nearby stations, using the spatial weighted matrix. These built environment variables mainly refer to station attributes and accessibility, cycling infrastructure, public transport facilities, and land use characteristics. Generally, we found that both trip demand and the ratio of demand to supply at bike stations were positively influenced by population density, length of bike lanes and branch roads, and diverse land-use types near the station, and were negatively influenced by the distance to city center and the number of other nearby stations. However, public transport facilities do not show a significant impact on both demand and D/S at stations, which might be attributed to local modal split. We also found that the PBS usage at stations is positively associated with usage at nearby stations. Model results also suggest that adding a new station (with empty capacity) within a 300 m catchment of a station to share the capacity of the bike station can improve the demand-supply ratio at the station. Referring to both trip demand models and D/S models, regression fits were quite strong with larger R2 for weekdays than for weekends and holidays, and for morning and evening peak hours than for off-peak hours. These quantitative analyses and findings can be beneficial to urban planners and operators to improve the demand and turnover of public bikes at bike stations, and to expand or build public bike systems in the future.  相似文献   

7.
A Mixed Geographically Weighted Regression (GWR) model is applied to explore the effects of shared mobility trips on taxi and public transit ridership at the macro-level. Several essential variables, including socioeconomic, transportation, network, and land use data, are set as the causal factors. The experiment is conducted using the smart card data, vehicle GPS trajectories, and vehicle order data collected in Shenzhen City, China. We show that the Mixed GWR outperforms the basic GWR in model fitting and capturing the unobserved heterogeneity. The spatial analysis reveals that bike-sharing addresses the “last-mile” and “first-mile” problems to bus and metro in the urban periphery. It substitutes the bus and taxis in short-distance journeys in the city center. However, the over-placement of bike-sharing in some regions limits the flexibility of bike-sharing connections to the metro. In the city center, ride-hailing fills the gaps in bus coverage and competes with the metro. In the peripheral areas, ride-hailing replaces buses and improves the accessibility to metro stations. The transportation policy increases the cooperation between ride-hailing and taxis citywide, although competitions in few regions need to be solved. The abovementioned results provide policy suggestions to optimize the allocation of local transportation resources.  相似文献   

8.
Cycling volumes are necessary to understand what influences ridership and are essential for safety studies. Traditional methods of data collection are expensive, time consuming, and lack spatial and temporal detail. New sources have emerged as a result of crowdsourced data from fitness apps, allowing cyclists to track routes using GPS enabled cell phones. Our goal is to determine if crowdsourced data from fitness apps data can be used to quantify and map the spatial and temporal variation of ridership. Using data provided by Strava.com, we quantify how well crowdsourced fitness app data represent ridership through comparison with manual cycling counts in Victoria, British Columbia. Comparisons are made for hourly, AM and PM peak, and peak period totals that are separated by season. Using Geographic Information Systems (GIS) and a Generalized Linear Model we modelled the relationships between crowdsourced data from Strava and manual counts and predicted categories of ridership into low, medium, and high for all roadways in Victoria. Our results indicate a linear association (r2 0.40 to 0.58) between crowdsourced data volumes and manual counts, with one crowdsourced data cyclist representing 51 riders. Categorical cycling volumes were predicted and mapped using data on slope, traffic speeds, on street parking, time of year, and crowdsourced ridership with a predictive accuracy of 62%. Crowdsourced fitness data are a biased sample of ridership, however, in urban areas the high temporal and spatial resolution of data can predict categories of ridership and map spatial variation. Crowdsourced fitness apps offer a new source of data for transportation planning and can increase the spatial and temporal resolution of official count programs.  相似文献   

9.
Bicyclists are among the most vulnerable road users in the urban transportation system. It is critical to investigate the contributing factors to bicycle-related crashes and to identify the hotspots for efficient allocation of treatment resources. A grid-cell-based modeling framework was used to incorporate heterogeneous data sources and to explore the overall safety patterns of bicyclists in Manhattan, New York City. A random parameters (RP) Tobit model was developed in the Bayesian framework to correlate transportation, land use, and sociodemographic data with bicycle crash costs. It is worth mentioning that a new algorithm was proposed to estimate bicyclist-involved crash exposure using large-scale bicycle ridership data from 2014 to 2016 obtained from Citi Bike, which is the largest bicycle sharing program in the United States. The proposed RP Tobit model could deal with left-censored crash cost data and was found to outperform the Tobit model by accounting for the unobserved heterogeneity across neighborhoods. Results indicated that bicycle ridership, bicycle rack density, subway ridership, taxi trips, bus stop density, population, and ratio of population under 14 were positively associated with bicycle crash cost, whereas residential ratio and median age had a negative impact on bicycle crash cost. The RP Tobit model was used to estimate the cell-specific potential for safety improvement (PSI) for hotspot ranking. The advantages of using the RP Tobit crash cost model to capture PSI are that injury severity is considered by being converted into unit costs, and varying effects of certain explanatory variables are accounted for by incorporating random parameters. The cell-based hotspot identification method can provide a complete risk map for bicyclists with high resolution. Most locations with high PSIs either had unprotected bicycle lanes or were close to the access points to protected bicycle routes.  相似文献   

10.
As an important transport tool, taxi plays a significant role to meet travel demand in urban city. Understanding the travel patterns of taxis is important for addressing many urban sustainability challenges. Previous research has primarily focused on examining the statistical properties of taxi trips to characterize travel patterns, while it may be more appropriate to explore taxi service strategies on seasonal, weekly or daily time scale. Therefore, intra-urban taxi mobility is investigated by examining taxi trajectory data that were collected in Harbin, China, while 12-week corresponding to 12-month is chosen as the sampling period in our study. The multivariate spatial point pattern analysis is firstly adopted to characterize and model the spatial dependence, and infer significant positive spatial relationships between the picked up points (PUPs) and the dropped off points (DOPs). Secondly, the points of interest (POIs) are identified from DOPs using the emerging hot spot detection technique, then the taxi services and movement patterns surrounding POIs are further examined in details. Moreover, our study builds on and extends the existing work to examine the statistical regularities of trip distances, and we also validate and quantify the impacts posed by airport trips on the distance distributions. Finally, the movement-based kernel density estimation (MKDE) method is proposed to estimate taxis' service ranges within three isopleth levels (50, 75 and 95%) between summer/weekday and winter/weekend from taxi driver's perspective, and season as well as temperature factors are identified as the significant effect within certain service range levels. These results are expected to enhance current urban mobility research and suggest some interesting avenues for future research.  相似文献   

11.
Recent success of bicycle-sharing systems (BSS) have led to their growth around the world. Not surprisingly, there is increased research towards better understanding of the contributing factors for BSS demand. However, these research efforts have neglected to adequately consider spatial and temporal interaction of BSS station's demand (arrivals and departures). It is possible that bicycle arrival and departure rates of one BSS station are potentially inter connected with bicycle flow rates for neighboring stations. It is also plausible that the arrival and departure rates at one time period are influenced by the arrival and departure rates of earlier time periods for that station and neighboring stations. Neglecting the presence of such effects, when they are actually present will result in biased model estimates. The major objective of this study is to accommodate for spatial and temporal effects (observed and unobserved) for modelling bicycle demand employing data from New York City's bicycle-sharing system (CitiBike). Towards this end, spatial error and spatial lag models that accommodate for the influence of spatial and temporal interactions are estimated. The exogenous variables for these models are drawn from BSS infrastructure, transportation network infrastructure, land use, point of interests, and meteorological and temporal attributes. The results provide strong evidence for the presence of spatial and temporal dependency for BSS station's arrival and departure rates. A hold out sample validation exercise further emphasizes the improved accuracy of the models with spatial and temporal interactions.  相似文献   

12.
This study aims to investigate the impacts of the built environment on traffic safety at a zonal level using a newly developed crash-related zone system. Traffic analysis zones (TAZs) have been widely employed to analyze traffic safety at a macroscopic level. However, this zone system use may present problems. Unlike previous studies, in which new zoning systems were created from aggregating TAZs, in this study the new zone system, formed by traffic safety analysis zones (TSAZs), is created from the smallest available census units. Geographically Weighted Negative Binomial Regression (GWNBR) models are used and a comparative analysis between non-spatial global crash prediction models and spatial local GWPR (Geographically Weighted Poisson Regression) and GWNBR models using the two zonal systems is presented. We find that TSAZs based models performed better than TAZs based models, especially when combined to the GWNBR technique. Our results show that several features of the built environment are significant crash predictors, and that the relationships among these features and traffic safety vary across space. By combining a crash-related zonal system with spatial GWNBR models to understand the built environment effects on traffic safety, the results of the analysis can help urban planners to consider traffic safety proactively when planning or retrofitting urban areas.  相似文献   

13.
The node-place model is an analytical framework that was devised to identify spatial development opportunities for railway stations and their surroundings at the regional scale. Today, the model is predominantly invoked and applied in the context of ‘transit-oriented development’ planning debates. As a corollary, these model applications share the pursuit of supporting a transition towards increased rail ridership (and walking and cycling), and therefore assumingly a transition to more sustainable travel behavior. Surprisingly, analyses of the importance of node and place interventions in explaining rail ridership remain thin on the ground. Against this backdrop, this paper aims to integrate the node-place model approach with current insights that derive from the trip end modeling literature. To this end, we apply a series of regression analyses in order to appraise the most important explanatory factors that impact rail ridership in Flanders, Belgium, today. This appraisal is based on both geographical and temporal data segmentations, in order to test for different types of railway stations and for different periods of the day. Additionally, we explore spatial nonstationarity by calibrating geographically weighted regression models, and this for different time windows. The models developed should allow policy and planning professionals to investigate the possible demand impacts of changes to existing stations and the walkable area surrounding them.  相似文献   

14.
The built environment is an important determinant of travel demand and mode choice. Establishing the relationship between the built environment and transit use using direct models can help planners predict the impact of neighborhood-level changes, that are otherwise overlooked. However, limited research has compared the impacts of the built environment for different networks and for individual transit modes.This paper addresses this gap by developing built environment and transit use models for three multimodal networks, Amsterdam, Boston and Melbourne, using a consistent methodology. A sample of train, tram and bus sites with similar station-area built environments are selected and tested to establish if impacts differ by mode. It is the first study that develops neighborhood-level indicators for multiple locations using a consistent approach.This study compares results for ordinary least squares regression and two-stage least squares (2SLS) regression to examine the impact of transit supply endogeneity on results. Instrumented values are derived for bus and tram frequency in Melbourne and bus frequency in Boston. For other mode and city combinations, the 2SLS approach is less effective at removing endogeneity.Results confirm that different associations exist between the built environment and transit modes, after accounting for mode location bias, and that this is true in multiple networks. Local access and pedestrian connectivity are more important for bus use than other modes. Tram is related to commercial density. This finding is consistent for all samples. Land use mix and bicycle connectivity also tend to be associated with higher tram use. Train use is highest where opportunities exist to transfer with bus. Population density is commonly linked to ridership, but its significance varies by mode and network.More research is needed to understand the behavioral factors driving modal differences to help planners target interventions that result in optimal integration of land use with transit modes.  相似文献   

15.
This paper provides the first evidence of the causal effect of COVID-19 on metro use using real-time data from the Taipei Metro System in Taiwan. In contrast to other cities or countries, Taiwan did not enforce strict social lockdowns or mandatory stay-at-home orders to combat COVID-19. The major prevention strategies to the pandemic in Taiwan include promoting social distancing, mandating the wearing of face masks in public areas, and requiring all international arrivals to quarantine for 14 days. Using administrative data on confirmed cases of COVID-19 and ridership from metro stations with the difference-in-differences model, we find that an additional new confirmed case of COVID-19 reduces metro use by 1.43% after controlling for local socio-demographic variables associated with ridership and the number of international arrivals to Taiwan. This result implies that the reduction in metro trips is attributable to decreases in residents' use of public transportation due to perceived health risks. Furthermore, the effect of COVID-19 on metro use disproportionally impacts stations with different characteristics. The effect is more pronounced for metro stations connected to night markets, shopping centers, or colleges. Although decreases in metro ridership lower the revenue of the Taipei Metro System, our results indicate a tradeoff between increased financial burdens of public transportation systems and reducing medical expenses associated with COVID-19.  相似文献   

16.
Public transportation is a critical component of cities' transportation system that can be supported by a safe, complete, and connected pedestrian infrastructure. Agencies spend millions of dollars each year to improve transit ridership, yet many of the transit destinations do not have adequate pedestrian infrastructure to connect to the transit stops creating a substantial barrier to growing demand. This is particularly true in suburban areas. This paper presents a replicable methodology for estimating relative parcel-level transit demand such that analysts can conduct fine-grained evaluation and prioritization of the pedestrian network enhancements as they relate to public transit system. To this end, pedestrian infrastructure can boost transit ridership and enhance riders' safety. We rely on spatial data available in most cities coupled with land use and socioeconomic data to generate potential relative number of walk-to-transit trips for each parcel and weight the occupied road segments based on the results from mode choice and gravity models. Using this GIS-based tool, we identify road segments that have a higher potential in serving as a walking path to transit stops and prioritize gaps in existing sidewalk infrastructure. This result eliminates arbitrary sidewalk investment scoring programs and the reliance on transit walksheds to direct investment. We apply this method to a case study of the city of Knoxville and discuss the challenges and possible solutions. This approach can help city planners and engineers in data-oriented investment strategic management of sidewalk enhancement programs that support transit.  相似文献   

17.
Many studies have identified links between the built environment (BE) and transit use. However, little is known about whether the BE predictors of bus, train, tram and other transit modes are different. Studies to date typically analyze modes in combination; or analyze one mode at a time. A major barrier to comparing BE impacts on modes is the difference in the types of locations that tend to be serviced by each mode. A method is needed to account for this ‘mode location bias’ in order to draw robust comparison of the predictors of each mode.This study addresses this gap using data from Melbourne, Australia where three types of public transport modes (train, tram, bus) operate in tandem. Two approaches are applied to mitigate mode location bias: a) Co-located sampling – estimating ridership of different modes that are located in the same place; and b) Stratified BE sampling – observations are sampled from subcategories with similar BE characteristics.Regression analyses using both methods show that the BE variables impacting ridership vary by mode. Results from both samples suggest there are two common BE factors between tram and train, and between tram and bus; and three common BE factors between train and bus. The remaining BE predictors – three for train and tram and one for bus - are unique to each mode. The study's design makes it possible to confirm this finding is valid irrespective of the type of locations serviced by modes. This suggests planning and forecasting should consider the specific associations of different modes to their surrounding land use to accurately predict and match transit supply and demand. The Stratified sampling approach is recommended for treating location bias in future mode comparison, because it explains more ridership variability and offers a transferrable approach to generating representative samples.  相似文献   

18.
An attractive topic in transportation practice is transit ridership estimation. Reliable estimates are beneficial to spatial structuring, facility design, and vehicle operation, as well as financial and labor management. Traditional ridership estimation approaches mainly rely on regression models that consider subway fares, population, and employment distribution in surrounding areas. Yet consideration of ridership’s spatial dependency is largely lacking in these models. This paper recognizes the spatial effect by estimating the ridership of the new Second Avenue Subway in New York City using a network Kriging method. Network distance, instead of Euclidean distance, is used to reflect the fact that subway stations are only connected by subway tunnels. Results show that the new service should effectively relieve the traffic burden on other currently crowded subway lines.  相似文献   

19.
Dockless bike-sharing is emerging as a convenient transfer mode for metros. The riding distances of bike-sharing to or from metro stations are defined as transfer distances between dockless bike-sharing systems and metros, which determine the service coverages of metro stations. However, the transfer distances have rarely been studied and they may vary from station to station. Therefore, this study aims to explore the influencing factors and spatial variations of transfer distances between dockless bike-sharing systems and metros. First, a catchment method was proposed to identify bike-sharing transfer trips. Then, the Mobike trip data, metro smartcard data, and built environment data in Shanghai were utilized to calculate the transfer distances and travel-related and built environment variables. Next, a multicollinearity test, stepwise regression, and spatial autocorrelation test were conducted to select the best explanatory variables. Finally, a geographically weighted regression model was adopted to examine the spatially varying relationships between the 85th percentile transfer distances and selected explanatory variables at different metro stations. The results show that the transfer distances are correlated with the daily metro ridership, daily bike-sharing ridership, population density, parking lot density, footway density, percentage of tourism attraction, distance from CBD, and bus stop density around metro stations. Besides, the effects of the explanatory variables on transfer distances vary across space. Generally, most variables have greater effects on transfer distances in the city suburbs. This study can help governments and operators expand the service coverage of metro stations and facilitate the integration of dockless bike-sharing and metros.  相似文献   

20.
The demand for recreation and nature-based tourism experiences in parks and protected areas continues to grow in many locations worldwide and in response, many parks are employing transit services designed to improve visitor access. Transit services (e.g., public bus service) are a component of the overall park transportation system and are very desirable in park settings as they yield many advantages over personal auto access including reduced congestion in parking areas, a reduced carbon footprint, and an enhanced visitor experience. However, a growing body of research also suggests that the delivery of visitors via transit to destinations within a park or protected area may have unique ecological disturbance implications resulting from increased visitor use, density, and altered spatial and temporal use patterns. In this paper, we examine the relevant literature and present examples from recent research that illustrates the potential range of ecologic impacts from visitor deliveries via park transportation systems. We conclude while transit systems remain very desirable in park settings, depending on a range of situational factors, conventional, demand-driven planning and management approaches may result in unintended impacts to ecological conditions. Overall, this discussion provides a framework for improved management of the potential ecological impacts of protected area transportation systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号