首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The objective of the present work was to evaluate the effect of hydraulic retention time (HRT) on hydrolysis and acidogenesis for the pretreatment processes: acid phase digestion (APD) and autothermal thermophilic aerobic digestion (ATAD) using blended municipal sludge. The effect of the different pretreatment steps on mesophilic anaerobic digestion (MAD) was evaluated in terms of methane yield, keeping the operating conditions of the MAD the same for all systems. Best operating conditions for both APD and ATAD were observed for 2.5 d HRT with high total volatile fatty acids (tVFA), and the highest methane yield observed for MAD. No significant difference was observed between the two processes in terms of overall volatile solids (VS) reduction with same total HRT. The autothermal process produced heat of 14,300 J/g VS removed from hydrolytic and acetogenic reactions without compromising overall methane yields when the HRT was 2.5 d or lower and the total O2 used was 0.10 m3 O2/g VS added or lower. However, the process needs the input of oxygen and engineering analysis should balance these differences when considering the relative merits of the two pretreatment processes. This is the first study of its kind directly comparing these two viable pretreatment processes with the same sludge.  相似文献   

2.
防止藻类过度繁殖的青草沙水库合理水力停留时间初探   总被引:2,自引:1,他引:2  
青草沙水库位于长江口长兴岛的西北水域,水量丰富、水质优良,是上海城市供水水源战略转移的重要依托之一.青草沙水库水力停留时间是确定水库运行方式的重要依据,它直接关系到水库水位、泵闸调度及运行成本等.根据水库库形特征,库内外水文水质条件,研究合理水力停留时间,改善水环境,最大限度发挥水库的自净能力,防止藻类大面积繁殖.通过建立水库藻类生长模型,提出青草沙水库满足藻类"水华"控制要求的水力停留时间,在夏季温度较高(>25 ℃)时水库水力停留时间可以取15~18 d,在春秋季温度相对稍低时(<20 ℃)可以取25~30 d.  相似文献   

3.
The rheological characterization is of crucial importance in sludge management both for biomass dewatering and stabilization purposes and for the definition of design parameters for sludge handling operations. The sludge retention time (SRT) has a significant influence on biomass properties in biological wastewater treatment systems and in particular in membrane bioreactors (MBR). The aim of this work is to compare the rheological behaviour of the biomass in a membrane bioreactor operated under different SRT. A bench scale MBR was operated for four years under the same conditions except for the SRT, that ranged from 20 days to complete sludge retention. The rheological properties were measured over time and the apparent viscosity was correlated with the concentration of solid material under equilibrium conditions. The three models most commonly adopted for rheological simulations were evaluated and compared in terms of their parameters. Steady state average values of these parameters were related to the equilibrium biomass concentration (MLSS). The models were tested to select the one better fitting the experimental data in terms of Mean Root Square Error (MRSE). The relationship between the apparent viscosity and the shear rate, as a function of solid concentration, was determined and proposed.  相似文献   

4.
To convert high-solids organic wastes (3% w./w.) to high-value hydrogen, a full factorial experimental design was employed in planning the experiments for learning the effects of pH and hydraulic retention time (HRT) on the hydrogen production in a chemostat reactor using waste yeast obtained from beer processing wastes. For determining which experimental variable settings affect hydrogen production, predictive polynomial quadratic equation and response surface methodology were employed to determine and explain the conditions required for high-value hydrogen production. Experimental results indicate that a maximum hydrogen production rate of 460 mL/gVSS/d was obtained at pH = 5.8 and HRT = 32 hours. Moreover, hydrogenase targeted RT-PCR results indicate that Clostridium thermocellum and Klebsiella pneumoniae predominated.  相似文献   

5.
The Asahi River Dam reservoir is one of the important freshwater resources for Okayama City, Japan. The eutrophication of the reservoir has been warned of since the 1980s. In this study, we discuss the relationship between hydraulic retention time and increase of phytoplankton, and the influence of wind-driven currents on the spatial distribution of phytoplankton based on the observations and numerical simulations. Observations were carried out from 1993 to 1995. The numerical simulation of hydraulics in the reservoir was carried out by applying an orthogonal curvilinear finite difference method. Judging from phosphorus and nitrogen concentrations, the water quality of the Asahi River Dam reservoir is usually eutrophic. However, high concentrations of chlorophyll-a are not always observed. The observed dependence of chlorophyll-a concentration on hydraulic retention time is reproduced fairly well by a simple relationship derived from the balance of phytoplankton based on the assumption of complete mixing. The hydraulic retention time is a limiting factor of an increase in phytoplankton in the Asahi River Dam reservoir. It takes a retention time of 2 weeks for the sufficient increase of phytoplankton. The results obtained by the simulations show that the wind-driven currents play an important role in the spatial distribution of phytoplankton.  相似文献   

6.
The effect of hydraulic retention time(HRT) and pH on the biooxidation of ferrous iron during simulated acid mine drainage(AMD)treatment was investigated.The simulated AMD was highly acidic(pH 2.5),rich in iron(about 1700 mg/L) and copper(about 200 mg/L),and contained high concentrations of sulfate(about 4700 mg/L).The biooxidation of ferrous iron was studied in a laboratory-scale upflow packed bed bioreactor(PBR).The HRT was shortened stepwise from 40 h to 20 h,13 h,and 8 h under the acidic environment at a pH value of 2.2.Then,the influent pH value was changed from 2.2 to 1.2 at a constant suitable HRT.Physiochemical and microbial community structure analyses were performed on water samples and stuffing collected from the bioreactor under different conditions.The results indicate that the efficiency of ferrous iron oxidation gradually decreased with the decrease of HRT,and when the HRT exceeded 13 h,ferrous iron in AMD was almost completely oxidized.In addition,the best efficiency of ferrous iron oxidation was achieved at the influent pH value of 1.8.Microbial community structure analyses show that Leptospirillum is the predominant genus attached in the bioreactor,and low influent pH values are suitable for the growth of Leptospirillum.  相似文献   

7.
With rural population expansion and improvement of the socio-economic standard of living, treatment of rural domestic wastewater has rapidly become a major aspect of environmental concern. Selection of a suitable method for treatment of rural domestic wastewater depends on its efficiency, simplicity, and cost-effectiveness. This study investigated the effects of hydraulic retention time(HRT), temperature, and effluent recycling on the treatment efficiency of an anaerobic filter(AF) reactor. The first round of experimental operations was run for three months with HRTs of one, two, and three days, temperatures of 18℃, 21℃, and 24℃, and no effluent recycling. The second round of experimental operations was conducted for another three months with HRTs of three and four days; temperatures of 30.67℃, 30.57℃, and 26.91℃; and three effluent recycling ratios of 1:1, 1:2, and 2:1. The first round of operations showed removal rates of 32% to 44% for COD, 30% to 35% for TN, 32% to 36% for +4NH-N, 19% to 23% for 3NO-N-, and 12% to 22% for TP. In the second round of operations, the removal rates varied from 75% to 81% for COD, 35% to 41% for TN, 31% to 39% for +4NH-N, 30% to 34% for 3NO-N-, and 41% to 48% for TP. The average gas production rates were 6.72 L/d and 7.26 L/d for the first and second rounds of operations, respectively. The gas production rate increased in the second round of operations as a result of applied effluent recycling. The best removal efficiency was obtained for an optimum HRT of three days, a temperature of 30℃, and an effluent recycling ratio of 2:1. The results show that the removal efficiency of the AF reactor was affected by HRT, temperature, and effluent recycling.  相似文献   

8.
Algal incorporation into the biomass is important in an innovative wastewater treatment that exploits the symbiosis between bacterial activated sludge and microalgae (Chlorella vulgaris sp. Hamburg). It allows a good and easy algae separation by means of clarification. The effect of process parameters food to microorganisms ratio (F/M) and hydraulic retention time (HRT) on the process performance, evaluated by settleability, microalgae incorporation to biomass and nutrient removal, was studied. HRT hinted at a significant influence in the growth rate of algae, while F/M turned out to be important for stability when algae are incorporated into the biomass. This parameter also affects the total nitrogen removal of the treatment. Stable flocs with incorporated algae and supernatants with low free swimming algae concentrations were obtained at high HRT and low F/M values.  相似文献   

9.
To determine the removal efficiency of ultrafiltration (UF) membranes for nano-particles in the size range of viruses the state of the art uses challenge tests with virus-spiked water. This work focuses on bench-scale and semi-technical scale experiments. Different experimental parameters influencing the removal efficiency of the tested UF membrane modules were analyzed and evaluated for bench- and semi-technical scale experiments. Organic matter in the water matrix highly influenced the removal of the tested bacteriophages MS2 and phiX174. Less membrane fouling (low ΔTMP) led to a reduced phage reduction. Increased flux positively affected phage removal in natural waters. The tested bacteriophages MS2 and phiX174 revealed different removal properties. MS2, which is widely used as a model organism to determine virus removal efficiencies of membranes, mostly showed a better removal than phiX174 for the natural water qualities tested. It seems that MS2 is possibly a less conservative surrogate for human enteric virus removal than phiX174. In bench-scale experiments log removal values (LRV) for MS2 of 2.5-6.0 and of 2.5-4.5 for phiX174 were obtained for the examined range of parameters. Phage removal obtained with differently fabricated semi-technical modules was quite variable for comparable parameter settings, indicating that module fabrication can lead to differing results. Potting temperature and module size were identified as influencing factors. In conclusion, careful attention has to be paid to the choice of experimental settings and module potting when using bench-scale or semi-technical scale experiments for UF membrane challenge tests.  相似文献   

10.
The aim of this work was to evaluate the performance of a pilot-scale upflow anaerobic sludge blanket (UASB) reactor during the treatment of cereal-processing industry wastewater under low-temperature conditions (17 degrees C) for more than 300 days. The applied organic loading rate (OLR(appl)) was gradually increased from 4 to 6 and 8 kg COD(sol)/m3d by increasing the influent soluble chemical oxygen demand (COD(sol)), while keeping the hydraulic retention time constant (5.2 h). The removal efficiency was high (82 to 92%) and slightly decreased after increasing the influent COD(sol) and the OLR(appl). The highest removed organic loading rate (OLR(rem)) was reached when the UASB reactor was operated at 8 kg COD(sol)/m3d and it was two times higher than that obtained for an OLR(appl) of 4 kg COD(sol)/m3d. Some disturbances were observed during the experimentation. The formation of biogas pockets in the sludge bed significantly complicated the biogas production quantification, but did not affect the reactor performance. The volatile fatty acids in the effluent were low, but increased as the OLR(appl) increased, which caused an increment of the effluent COD(sol). Anaerobic treatment at low temperature was a good option for the biological pre-treatment of cereal processing industry wastewater.  相似文献   

11.
A series of completely mixed methanogenic anaerobic digesters have been operated to determine the rate of hydrolysis of primary sewage sludge. The hydraulic retention time was reduced from 60 d to when the system failed (approximately 5 d), while the feed COD concentration was 40, 25, 13 and 2 gCOD/L. A steady state model based on first order kinetics was developed to simulate the hydrolysis rate at each retention time and feed concentration. With the mean value for the hydrolysis rate constant (0.992 +/- 0.492 d(-1)), this model was able to accurately predict the effluent COD for all steady state operating conditions. However, the effluent COD concentration was relatively insensitive to the exact value for this constant. The model provides a framework for analysis of anaerobic digestion experimental data, to enable meaningful comparisons.  相似文献   

12.
The main purpose of this study was to evaluate the performance of the electrochemical oxidation process as a post-treatment for the effluents of a bench-scale UASB reactor treating simulated wastewater from an unbleached pulp plant. The oxidation process was performed using a single compartment cell with two plates as electrodes. The anode was made of Ti/Ru0.3Ti0.7O2 and the cathode of stainless steel. The following variables were evaluated: current density (75, 150 and 225 mA cm(-2)) and recirculation flow rate in the electrochemical cell (0.22, 0.45 and 0.90 L h(-1)). The increase in current density from 75 to 225 mA cm(-2) did not increased the color removal efficiency for the tested flow rates, 0.22, 0.45 and 0.90 L h(-1), however the energy consumption increased significantly. The results indicated the technical feasibility of the electrochemical treatment as post-treatment for UASB reactors treating wastewaters from pulp and paper plants.  相似文献   

13.
Infiltration techniques are now widely used to manage stormwater in urban areas. These techniques are used and recognized around the world for their many advantages, such as decreasing stormwater flow in sewer systems and recharging groundwater. But numerous cases of infiltration devices that failed after a few years of operation are still being reported. This study, which is based on site-monitoring of operational infiltration systems, is part of the Field Observatory for Urban Water Management (OTHU). The main goals of this study are to improve knowledge of long-term hydraulic behaviour, especially as concerns the clogging speed and the quality of the runoff. This article will present the site, the monitoring process and the model that will be used to assess the hydraulic behaviour. First results of the calibration of the model show that the model is able to assess the hydraulic behaviour of the basin when it is clogged (average value of hydraulic resistance 17.1 h) and when it has been scraped (hydraulic resistance less than 3.8 h). However, further data are needed in order to validate the model. We also show that the experimental setup is well designed to assess the water volume and the sediment brought to the basin with low uncertainties.  相似文献   

14.
The paper presents results from an experimental and numerical study of wind-induced flows and transportation patterns in highway wet detention ponds. The study presented here is part of a general investigation on road runoff and pollution in respect to wet detention ponds. The objective is to evaluate the quality of long term simulations based on historical rain series of the pollutant discharges from roads and highways. The idea of this paper is to evaluate the effects of wind on the retention time and compare the retention time for the situation of a spatial uniform wind shear stress with the situation of a "real" spatial non-uniform shear stress distribution on the surface of the pond. The result of this paper shows that wind plays a dominant role for the retention time and flow pattern. Furthermore, the results shows that the differences in retention time between the use of uniform and non-uniform wind field distributions are not significant to this study.  相似文献   

15.
This paper presents results from exploratory experiments to test the technical feasibility of electrolytic treatment and coagulation followed by flocculation and sedimentation as post-treatment for the effluent of an UASB reactor treating simulated wastewater from an unbleached Kraft pulp mill. The electrolytic treatment provided up to 67% removal of the remaining COD and 98% of color removal. To achieve these efficiencies the energy consumption ranged from 14 Wh x l(-1) to 20 Wh x l(-1). The coagulation-flocculation treatment followed by settling required 350-400 mg x l(-1) of aluminium sulfate. The addition of a high molecular weight cationic polymer enhanced both COD and color removal. Both post-treatment processes are technically feasible.  相似文献   

16.
The effects of increasing nitrobenzene (NB) concentrations and hydraulic retention time (HRT) on the performance of anaerobic baffled reactor (ABR) and aerobic completely stirred tank reactor (CSTR) were studied. In the first step the NB concentration was increased from 30 to 700 mg/L at constant COD and flowrates. Maximum COD removal efficiencies in ABR varied between 88-92% as NB concentrations increased from 30 to 210 mg/L. After this dose, COD removal efficiency decreased to 85 and 79% at NB concentrations of 550 and 700 mg/L, respectively. Removal efficiencies of NB were nearly 100% for all NB concentrations in ABR reactor effluent. In the second step, COD and NB concentrations were kept constant while HRT decreased from 10.38 days to 1 day. As HRT decreased from 10.38 to 2.5 days the COD removal efficiencies in the anaerobic and anaerobic/aerobic reactor effluents were 92-94% and 97-98%, respectively. As HRT decreased from 2.5 days to 1 day COD removal efficiencies in the anaerobic and anaerobic/aerobic reactor effluents decreased to 83 and 95%, respectively. This study showed that HRT is a more important operation parameter than increasing NB concentration in ABR/CSTR sequential reactor system. Although ABR/CSTR system exhibited good COD and NB removal efficiencies, the lower HRTs slightly decreased the removal efficiencies compared to increasing NB concentration.  相似文献   

17.
离子交换对GCL防渗能力的影响   总被引:2,自引:1,他引:1  
GCL在垃圾填埋场中的用量占其总用量的90%,而填埋场中的沥滤液含有大量高于1价的阳离子(如Ca2+,Mg2+等),它们与GCL中的阳离子发生离子交换,影响GCL的防渗性能。经研究分析GCL膨润土中的阳离子与沥滤液中的阳离子发生离子交换的条件、机理、过程以及它们对GCL防渗能力的影响,提出了有针对性的解决办法。  相似文献   

18.
为了研究束窄河段对洪水演进过程特征的影响,采用二维全水动力模型GAST模拟了束窄段河道洪水过程,通过理想河道和灞河上游实际河道分析了河道束窄程度与洪水特性间的定量关系。结果表明:束窄断面形状对洪水过程特征中水深、流速影响的大小依次为V形>U形>梯形>矩形。断面形状相同时,束窄程度越大对水深和流速影响越大。河道束窄段上游水位壅高,下游水位相对降低但流速更大。扩宽河道束窄段可以降低上游水位及上下游流速差。在“8·19”洪水下,灞河束窄河段束窄程度降低时(原河道束窄程度为64.4%,河道疏浚后束窄程度分别为55.6%、46.7%、37.8%),上游最大水深分别减小0.669、0.985和1.066 m,上下游流速差分别减小0.702、1.592、2.550 m/s。洪量越大则河道水位越高、流速越大,束窄程度变化对水位和流速变化的影响也越大。将“8·19”洪水进行缩放入流情况下,原始河道最大水深分别为2.177、2.778、3.618 m,束窄程度为37.8%时最大水深减小至1.866、2.367、3.175 m。通过分析不同束窄程度的束窄段河道洪水过程特性,可为束窄段河道防...  相似文献   

19.
研究对比了UF工艺与PAC-UF工艺在不同运行阶段的除污染和微生物截留效能,采用微生物和余氯等指标初步分析了超滤出水中微生物增长的可能原因及影响因素,以及PAC对超滤出水生物安全性的作用.结果表明,不同运行阶段PAC-UF工艺出水的CODMn和UV254都远低于UF工艺,氨氮的去除率也较高,但积累了较多的亚硝酸盐氮.两种工艺在启动运行阶段和膜清洗后运行初期的消毒效果较好,长时间运行过程可造成超滤出水微生物数量增加,影响消毒效果.PAC-UF工艺出水的细菌总数和大肠菌群数小于UF工艺,在相同加氯量时消毒效果更好.在运行初期,PAC-UF工艺出水的余氯高于UF工艺,运行后期会出现余氯低于UF工艺现象.微生物指标和余氯保持的情况表明,两种工艺出水的最佳加氯量均为1 mg/L.  相似文献   

20.
摩阻对有压管道水力瞬变的影响   总被引:1,自引:0,他引:1  
袁小宁 《西北水电》2003,(4):34-35,42
有压管道水力瞬变的正确分析,对工程安全运行影响较大。文章根据瞬变过程中水流流态的变化,采用变摩阻系数,并对阻力项采用二阶近似,提高了水力瞬变分析的精度。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号