首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Pricing of an American option is complicated since at each time we have to determine not only the option value but also whether or not it should be exercised (early exercise constraint). This makes the valuation of an American option a free boundary problem. Typically at each time there is a particular value of the asset, which marks the boundary between two regions: to one side one should hold the option and to other side one should exercise it. Assuming that investors act optimally, the value of an American option cannot fall below the value that would be obtained if it were exercised early. Effectively, this means that the American option early exercise feature transforms the original linear pricing partial differential equation into a nonlinear one. We consider a penalty method approach in which the free and moving boundary is removed by adding a small and continuous penalty term to the Black–Scholes equation; consequently,the problem can be solved on a fixed domain. Analytical solutions of the Black–Scholes model of American option problems are seldom available and hence such derivatives must be priced by stable and efficient numerical techniques. Standard numerical methods involve the need to solve a system of nonlinear equations, evolving from the finite difference discretization of the nonlinear Black–Scholes model, at each time step by a Newton-type iterative procedure. We implement a novel linearly implicit scheme by treating the nonlinear penalty term explicitly, while maintaining superior accuracy and stability properties compared to the well-known θ-methods.  相似文献   

2.
The option pricing model developed by Black and Scholes and extended by Merton gives rise to partial differential equations governing the value of an option. When the underlying stock pays no dividends – and in some very restrictive cases when it does – a closed form solution to the differential equation subject to the appropriate boundary conditions, has been obtained. But, in some relevant cases such as the one in which the stock pays discrete dividends, no closed form solution has been found. This paper shows how to solve these equations by numerical methods. In addition, the optimal strategy for exercising American options is derived. A numerical illustration of the procedure is also presented.  相似文献   

3.
4.
We study a discrete time hedging and pricing problem in a market with liquidity costs. Using Leland’s discrete time replication scheme [Leland, H.E., 1985. Journal of Finance, 1283–1301], we consider a discrete time version of the Black–Scholes model and a delta hedging strategy. We derive a partial differential equation for the option price in the presence of liquidity costs and develop a modified option hedging strategy which depends on the size of the parameter for liquidity risk. We also discuss an analytic method of solving the pricing equation using a series solution.  相似文献   

5.
This paper extends the integral transform approach of McKean [Ind. Manage. Rev., 1965, 6, 32–39] and Chiarella and Ziogas [J. Econ. Dyn. Control, 2005, 29, 229–263] to the pricing of American options written on more than one underlying asset under the Black and Scholes [J. Polit. Econ., 1973, 81, 637–659] framework. A bivariate transition density function of the two underlying stochastic processes is derived by solving the associated backward Kolmogorov partial differential equation. Fourier transform techniques are used to transform the partial differential equation to a corresponding ordinary differential equation whose solution can be readily found by using the integrating factor method. An integral expression of the American option written on any two assets is then obtained by applying Duhamel’s principle. A numerical algorithm for calculating American spread call option prices is given as an example, with the corresponding early exercise boundaries approximated by linear functions. Numerical results are presented and comparisons made with other alternative approaches.  相似文献   

6.
We set up a new kind of model to price the multi-asset options. A square root process fluctuating around its mean value is introduced to describe the random evolution of correlation between two assets. In this stochastic correlation model with mean reversion term, the correlation is a random walk within the region from −1 to 1, and it is centered around its equilibrium value. The trading strategy to hedge the correlation risk is discussed. Since a solution of high-dimensional partial differential equation may be impossible, the Quasi-Monte Carlo and Monte Carlo methods are introduced to compute the multi-asset option price as well. Taking a better-of two asset rainbow as an example, we compare our results with the price obtained by the Black–Scholes model with constant correlation.  相似文献   

7.
In this paper we analyze a nonlinear Black–Scholes model for option pricing under variable transaction costs. The diffusion coefficient of the nonlinear parabolic equation for the price V is assumed to be a function of the underlying asset price and the Gamma of the option. We show that the generalizations of the classical Black–Scholes model can be analyzed by means of transformation of the fully nonlinear parabolic equation into a quasilinear parabolic equation for the second derivative of the option price. We show existence of a classical smooth solution and prove useful bounds on the option prices. Furthermore, we construct an effective numerical scheme for approximation of the solution. The solutions are obtained by means of the efficient numerical discretization scheme of the Gamma equation. Several computational examples are presented.  相似文献   

8.
We investigate qualitative and quantitative behavior of a solution of the mathematical model for pricing American style of perpetual put options. We assume the option price is a solution to the stationary generalized Black–Scholes equation in which the volatility function may depend on the second derivative of the option price itself. We prove existence and uniqueness of a solution to the free boundary problem. We derive a single implicit equation for the free boundary position and the closed form formula for the option price. It is a generalization of the well-known explicit closed form solution derived by Merton for the case of a constant volatility. We also present results of numerical computations of the free boundary position, option price and their dependence on model parameters.  相似文献   

9.
We show that under the Black–Scholes assumption the price of an arithmetic average Asian call option with fixed strike increases with the level of volatility. This statement is not trivial to prove and for other models in general wrong. In fact we demonstrate that in a simple binomial model no such relationship holds. Under the Black–Scholes assumption however, we give a proof based on the maximum principle for parabolic partial differential equations. Furthermore we show that an increase in the length of duration over which the average is sampled also increases the price of an arithmetic average Asian call option, if the discounting effect is taken out. To show this, we use the result on volatility and the fact that a reparametrization in time corresponds to a change in volatility in the Black–Scholes model. Both results are extremely important for the risk management and risk assessment of portfolios that include Asian options.  相似文献   

10.
The main purposes of this paper are: (1) to review three alternative methods for deriving option pricing models (OPMs), (2) to discuss the relationship between binomial OPM and Black–Scholes OPM, (3) to compare Cox et al. method and Rendleman and Bartter method for deriving Black–Scholes OPM, (4) to discuss lognormal distribution method to derive Black–Scholes OPM, and (5) to show how the Black–Scholes model can be derived by stochastic calculus. This paper shows that the main methodologies used to derive the Black–Scholes model are: binomial distribution, lognormal distribution, and differential and integral calculus. If we assume risk neutrality, then we don’t need stochastic calculus to derive the Black–Scholes model. However, the stochastic calculus approach for deriving the Black–Scholes model is still presented in Sect. 6. In sum, this paper can help statisticians and mathematicians understand how alternative methods can be used to derive the Black–Scholes option model.  相似文献   

11.
We derive the Green's function for the Black–Scholes partial differential equation with time-varying coefficients and time-dependent boundary conditions. We provide a thorough discussion of its implementation within a pricing algorithm that also accommodates American style options. Greeks can be computed as derivatives of the Green's function. Generic handling of arbitrary time-dependent boundary conditions suggests our approach to be used with the pricing of (American) barrier options, although options without barriers can be priced equally well. Numerical results indicate that knowledge of the structure of the Green's function together with the well-developed tools of numerical integration make our approach fast and numerically stable.  相似文献   

12.
In this paper it is proved that the Black–Scholes implied volatility satisfies a second order non-linear partial differential equation. The obtained PDE is then used to construct an algorithm for fast and accurate polynomial approximation for Black–Scholes implied volatility that improves on the existing numerical schemes from literature, both in speed and parallelizability. We also show that the method is applicable to other problems, such as approximation of implied Bachelier volatility.  相似文献   

13.
This paper extends the option pricing equations of [Black and Scholes, 1973] , [Jarrow and Madan, 1997] and [Husmann and Stephan, 2007] . In particular, we show that the length of the individual planning horizon is a determinant of an option’s value. The derived pricing equations can be presented in terms of the Black and Scholes [1973. Journal of Political Economy 81, 637–654] option values which ensures an easy application in practice.  相似文献   

14.
In the Black–Merton–Scholes framework, the price of an underlying asset is assumed to follow a pure diffusion process. No-arbitrage theory shows that the price of an option contract written on the asset can be determined by solving a linear diffusion equation with variable coefficients. Applying the separating variable method, the problem of option pricing under state-dependent deterministic volatility can be transformed into a Schrödinger spectral problem, which has been well studied in quantum mechanics. With Weyl–Titchmarsh theory, we are able to determine the boundary condition and the nature of the eigenvalues and eigenfunctions. The solution can be written analytically in a Stieltjes integral. A few case studies demonstrate that a new analytical option pricing formula can be produced with our method.  相似文献   

15.
In this paper, an exact and explicit solution of the well-known Black–Scholes equation for the valuation of American put options is presented for the first time. To the best of the author's knowledge, a closed-form analytical formula has never been found for the valuation of American options of finite maturity, although there have been quite a few approximate solutions and numerical approaches proposed. The closed-form exact solution presented here is written in the form of a Taylor's series expansion, which contains infinitely many terms. However, only about 30 terms are actually needed to generate a convergent numerical solution if the solution of the corresponding European option is taken as the initial guess of the solution series. The optimal exercise boundary, which is the main difficulty of the problem, is found as an explicit function of the risk-free interest rate, the volatility and the time to expiration. A key feature of our solution procedure, which is based on the homotopy-analysis method, is the optimal exercise boundary being elegantly and temporarily removed in the solution process of each order, and, consequently, the solution of a linear problem can be analytically worked out at each order, resulting in a completely analytical and exact series-expansion solution for the optimal exercise boundary and the option price of American put options.  相似文献   

16.
We consider an optimal investment and consumption problem for a Black–Scholes financial market with stochastic coefficients driven by a diffusion process. We assume that an agent makes consumption and investment decisions based on CRRA utility functions. The dynamic programming approach leads to an investigation of the Hamilton–Jacobi–Bellman (HJB) equation which is a highly nonlinear partial differential equation (PDE) of the second order. By using the Feynman–Kac representation, we prove uniqueness and smoothness of the solution. Moreover, we study the optimal convergence rate of iterative numerical schemes for both the value function and the optimal portfolio. We show that in this case, the optimal convergence rate is super-geometric, i.e., more rapid than any geometric one. We apply our results to a stochastic volatility financial market.  相似文献   

17.
We investigate the performances of the finite element method in solving the Black–Scholes option pricing model. Such an analysis highlights that, if the finite element method is carried out properly, then the solutions obtained are superconvergent at the boundaries of the finite elements. In particular, this is shown to happen for quadratic and cubic finite elements, and for the pricing of European vanilla and barrier options. To the best of our knowledge, lattice-based approximations of the Black–Scholes model that exhibit nodal superconvergence have never been observed so far, and are somehow unexpected, as the solutions of the associated partial differential problems have various kinds of irregularities.  相似文献   

18.
This paper derives a call option valuation equation assuming discrete trading in securities markets where the underlying asset and market returns are bivariate lognormally distributed and investors have increasing, concave utility functions exhibiting skewness preference. Since the valuation does not require the continouus time riskfree hedging of Black and Scholes, nor the discrete time riskfree hedging of Cox, Ross and Rubinstein, market effects are introduced into the option valuation relation. The new option valuation seems to correct for the systematic mispricing of well-in and well-out of the money options by the Black and Scholes option pricing formula.  相似文献   

19.
Newly introduced government-subsidized pension products in Germany are required to contain a promise by the seller to provide a “money-back guarantee” at the end of the term. The client is also given the right to stop paying premiums at any time (paid-up option). In this case, the amount of all premiums paid must also be guaranteed by the seller at maturity, no matter when the client stopped paying the premiums. Previous analyses of guarantees in such government-subsidized pension products have ignored this additional option. Within a generalized Black/Scholes framework, we analyze the value of the paid-up option for different products, market scenarios, and client behavior. Our results indicate that the paid-up option significantly increases the value of the money-back guarantee. Furthermore, we find that reducing volatility by shifting the client’s assets from stocks to bonds as maturity approaches is a suitable means of reducing the risk arising from the “pure” money-back guarantee but much less effective in reducing the risk arising from the paid-up option. JEL Classification G13 · G23 · G28  相似文献   

20.
In this paper, the valuation of stock and index options is analyzed in the context of Merton's model of capital market equilibrium with incomplete information. It is possible to derive a partial differential equation for options in such a context. The derivation gives more understanding of the way an option's future payoff is discounted to the present. In order to estimate some of its parameters, the model is calibrated to market prices. It is tested using market prices and the authors' valuation formula. It is found that model prices are not significantly different from market prices, especially when out-of-the-money and deep-in-the-money options are considered. The model gives an explanation to the “strike bias” and the “smile effect.” Simulations of models based respectively on stochastic volatilities and gamma processes, are in accordance with the findings in this paper concerning biases in the Black and Scholes model, especially for pricing deep-in-the-money and out-of-the-money options. Even if the estimation method has its drawbacks, the costs of gathering and processing information regarding the option and its underlying asset play a central role in explaining the biases observed in the Black and Scholes model and help also the understanding of the U-shaped curve known as the smile of volatilities.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号