首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This paper investigates the properties of the well-known maximum likelihood estimator in the presence of stochastic volatility and market microstructure noise, by extending the classic asymptotic results of quasi-maximum likelihood estimation. When trying to estimate the integrated volatility and the variance of noise, this parametric approach remains consistent, efficient and robust as a quasi-estimator under misspecified assumptions. Moreover, it shares the model-free feature with nonparametric alternatives, for instance realized kernels, while being advantageous over them in terms of finite sample performance. In light of quadratic representation, this estimator behaves like an iterative exponential realized kernel asymptotically. Comparisons with a variety of implementations of the Tukey–Hanning2 kernel are provided using Monte Carlo simulations, and an empirical study with the Euro/US Dollar future illustrates its application in practice.  相似文献   

2.
Asymptotic normality and quick consistency of quasi-maximum likelihood estimators of parameters in a multivariate Poisson process are proved. Possible application of the results obtained to the problem of unfolding histograms is briefly discussed.  相似文献   

3.
I propose a quasi-maximum likelihood framework for estimating nonlinear models with continuous or discrete endogenous explanatory variables. Joint and two-step estimation procedures are considered. The joint procedure is a quasi-limited information maximum likelihood procedure, as one or both of the log likelihoods may be misspecified. The two-step control function approach is computationally simple and leads to straightforward tests of endogeneity. In the case of discrete endogenous explanatory variables, I argue that the control function approach can be applied with generalized residuals to obtain average partial effects. I show how the results apply to nonlinear models for fractional and nonnegative responses.  相似文献   

4.
This article proposes omnibus specification tests of parametric dynamic quantile models. In contrast to the existing procedures, we allow for a flexible specification, where a possible continuum of quantiles is simultaneously specified under fairly weak conditions on the serial dependence in the underlying data-generating process. Since the null limit distribution of tests is not pivotal, we propose a subsampling approximation of the asymptotic critical values. A Monte Carlo study shows that the asymptotic results provide good approximations for small sample sizes. Finally, an application suggests that our methodology is a powerful alternative to standard backtesting procedures in evaluating market risk.  相似文献   

5.
We show how the dynamic logit model for binary panel data may be approximated by a quadratic exponential model. Under the approximating model, simple sufficient statistics exist for the subject-specific parameters introduced to capture the unobserved heterogeneity between subjects. The latter must be distinguished from the state dependence which is accounted for by including the lagged response variable among the regressors. By conditioning on the sufficient statistics, we derive a pseudo conditional likelihood estimator of the structural parameters of the dynamic logit model, which is simple to compute. Asymptotic properties of this estimator are studied in detail. Simulation results show that the estimator is competitive in terms of efficiency with estimators recently proposed in the econometric literature.  相似文献   

6.
We construct two classes of smoothed empirical likelihood ratio tests for the conditional independence hypothesis by writing the null hypothesis as an infinite collection of conditional moment restrictions indexed by a nuisance parameter. One class is based on the CDF; another is based on smoother functions. We show that the test statistics are asymptotically normal under the null hypothesis and a sequence of Pitman local alternatives. We also show that the tests possess an asymptotic optimality property in terms of average power. Simulations suggest that the tests are well behaved in finite samples. Applications to some economic and financial time series indicate that our tests reveal some interesting nonlinear causal relations which the traditional linear Granger causality test fails to detect.  相似文献   

7.
We propose non-nested hypothesis tests for conditional moment restriction models based on the method of generalized empirical likelihood (GEL). By utilizing the implied GEL probabilities from a sequence of unconditional moment restrictions that contains equivalent information of the conditional moment restrictions, we construct Kolmogorov–Smirnov and Cramér–von Mises type moment encompassing tests. Advantages of our tests over Otsu and Whang’s (2011) tests are: (i) they are free from smoothing parameters, (ii) they can be applied to weakly dependent data, and (iii) they allow non-smooth moment functions. We derive the null distributions, validity of a bootstrap procedure, and local and global power properties of our tests. The simulation results show that our tests have reasonable size and power performance in finite samples.  相似文献   

8.
When multiple durations are generated by a single unit, they may be related in a way that is not fully captured by the regressors. The omitted unit-specific variables might vary over the durations. They might also be correlated with the variables in the regression component. The authors propose an estimator that responds to these concerns and develop a specification test for detecting unobserved unit-specific effects. Data from Malaysia reveal that concentration of child mortality in some families is imperfectly explained by observed explanatory variables, and that failure to control for unobserved heterogeneity seriously biases the parameter estimates.  相似文献   

9.
Ordered data arise naturally in many fields of statistical practice. Often some sample values are unknown or disregarded due to various reasons. On the basis of some sample quantiles from the Rayleigh distribution, the problems of estimating the Rayleigh parameter, hazard rate and reliability function, and predicting future observations are addressed using a Bayesian perspective. The construction of β-content and β-expectation Bayes tolerance limits is also tackled. Under squared-error loss, Bayes estimators and predictors are deduced analytically. Exact tolerance limits are derived by solving simple nonlinear equations. Highest posterior density estimators and credibility intervals, as well as Bayes estimators and predictors under linear loss, can easily be computed iteratively.  相似文献   

10.
11.
This article studies density and parameter estimation problems for nonlinear parametric models with conditional heteroscedasticity. We propose a simple density estimate that is particularly useful for studying the stationary density of nonlinear time series models. Under a general dependence structure, we establish the root nn consistency of the proposed density estimate. For parameter estimation, a Bahadur type representation is obtained for the conditional maximum likelihood estimate. The parameter estimate is shown to be asymptotically efficient in the sense that its limiting variance attains the Cramér–Rao lower bound. The performance of our density estimate is studied by simulations.  相似文献   

12.
We propose a new framework exploiting realized measures of volatility to estimate and forecast extreme quantiles. Our realized extreme quantile (REQ) combines quantile regression with extreme value theory and uses a measurement equation that relates the realized measure to the latent conditional quantile. Model estimation is performed by quasi maximum likelihood, and a simulation experiment validates this estimator in finite samples. An extensive empirical analysis shows that high‐frequency measures are particularly informative of the dynamic quantiles. Finally, an out‐of‐sample forecast analysis of quantile‐based risk measures confirms the merit of the REQ.  相似文献   

13.
This work describes a Gaussian Markov random field model that includes several previously proposed models, and studies properties of its maximum likelihood (ML) and restricted maximum likelihood (REML) estimators in a special case. Specifically, for models where a particular relation holds between the regression and precision matrices of the model, we provide sufficient conditions for existence and uniqueness of ML and REML estimators of the covariance parameters, and provide a straightforward way to compute them. It is found that the ML estimator always exists while the REML estimator may not exist with positive probability. A numerical comparison suggests that for this model ML estimators of covariance parameters have, overall, better frequentist properties than REML estimators.  相似文献   

14.
15.
This paper presents efficient semiparametric estimators for endogenously stratified regression with two strata, in the case where the error distribution is unknown and the regressors are independent of the error term. The method is based on the use of a kernel-smoothed likelihood function which provides an explicit solution for the maximization problem for the unknown density function without losing information in the asymptotic limit. We consider both standard stratified sampling and variable probability sampling, and allow for the population shares of the strata to be either unknown or known a priori.  相似文献   

16.
This paper considers two empirical likelihood-based estimation, inference, and specification testing methods for quantile regression models. First, we apply the method of conditional empirical likelihood (CEL) by Kitamura et al. [2004. Empirical likelihood-based inference in conditional moment restriction models. Econometrica 72, 1667–1714] and Zhang and Gijbels [2003. Sieve empirical likelihood and extensions of the generalized least squares. Scandinavian Journal of Statistics 30, 1–24] to quantile regression models. Second, to avoid practical problems of the CEL method induced by the discontinuity in parameters of CEL, we propose a smoothed counterpart of CEL, called smoothed conditional empirical likelihood (SCEL). We derive asymptotic properties of the CEL and SCEL estimators, parameter hypothesis tests, and model specification tests. Important features are (i) the CEL and SCEL estimators are asymptotically efficient and do not require preliminary weight estimation; (ii) by inverting the CEL and SCEL ratio parameter hypothesis tests, asymptotically valid confidence intervals can be obtained without estimating the asymptotic variances of the estimators; and (iii) in contrast to CEL, the SCEL method can be implemented by some standard Newton-type optimization. Simulation results demonstrate that the SCEL method in particular compares favorably with existing alternatives.  相似文献   

17.
This paper concerns estimating parameters in a high-dimensional dynamic factor model by the method of maximum likelihood. To accommodate missing data in the analysis, we propose a new model representation for the dynamic factor model. It allows the Kalman filter and related smoothing methods to evaluate the likelihood function and to produce optimal factor estimates in a computationally efficient way when missing data is present. The implementation details of our methods for signal extraction and maximum likelihood estimation are discussed. The computational gains of the new devices are presented based on simulated data sets with varying numbers of missing entries.  相似文献   

18.
In this paper we consider the problem of semiparametric efficient estimation in conditional quantile models with time series data. We construct an M-estimator which achieves the semiparametric efficiency bound recently derived by Komunjer and Vuong (forthcoming). Our efficient M-estimator is obtained by minimizing an objective function which depends on a nonparametric estimator of the conditional distribution of the variable of interest rather than its density. The estimator is new and not yet seen in the literature. We illustrate its performance through a Monte Carlo experiment.  相似文献   

19.
Maximum likelihood is used to estimate a generalized autoregressive conditional heteroskedastic (GARCH) process where the residuals have a conditional stable distribution (GARCH-stable). The scale parameter is modelled such that a GARCH process with normally distributed residuals is a special case. The usual methods of estimating the parameters of the stable distribution assume constant scale and will underestimate the characteristic exponent when the scale parameter follows a GARCH process. The parameters of the GARCH-stable model are estimated with daily foreign currency returns. Estimates of characteristic exponents are higher with the GARCH-stable than when independence is assumed. Monte Carlo hypothesis testing procedures, however, reject our GARCH-stable model at the 1% significance level in four out of five cases.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号