首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 10 毫秒
1.
Pumped flow biofilm reactors (PFBR) for treating municipal wastewater   总被引:1,自引:0,他引:1  
A novel laboratory bench-scale sequencing batch biofilm reactor (SBBR) system was developed for the treatment of synthetic domestic strength wastewater, comprising two side-by-side 18 l reactor tanks, each containing a plastic biofilm media module. Aerobic and anoxic conditions in the biofilms were effected by intermittent alternate pumping of wastewater between the two reactors. With a media surface area loading rate of 4.2 g chemical oxygen demand (COD)/m2.d, the average influent COD, total nitrogen (TN) and ammonium-nitrogen (NH4-N) concentrations of 1021 mg/l, 97 mg/l and 54 mg/l, respectively, reduced to average effluent concentrations of 72 mg COD/l, 17.8 mg TN/l, and 5.5 mg NH4-N /l. Using a similar alternating biofilm exposure arrangement, a 16 person equivalent pilot (PE) plant was constructed at a local village treatment works to remove organic carbon from highly variable settled municipal wastewater and comprised two reactors, one positioned above the other, each containing a module of cross-flow plastic media with a surface area of 100 m2. Two different pumping sequences (PS) in the aerobic phase were examined where the average influent COD concentrations were 220 and 237 mg/l for PS1 and PS2, respectively, and the final average effluent COD was consistently less than 125 mg/l--the European Urban Wastewater Treatment Directive limit--with the best performance occurring in PS1. Nitrification was evident during both PS1 and PS2 studies. A 300 PE package treatment plant was designed based on the bench-scale and pilot-scale studies, located at a local wastewater treatment works and treated municipal influent with average COD, suspended solids (SS) and TN concentrations of 295, 183 and 15 mg/l, respectively resulting in average effluent concentrations of 67 mg COD/l, 17 mg SS/l and 9 mg TN/l. The SBBR systems performed well, and were simple to construct and operate.  相似文献   

2.
The treatment of winery wastewater was performed at full-scale applying a two-stage fixed bed biofilm reactor (FBBR) system for the discharge in the sewerage. The results of the first year of operation at the full-scale plant are presented. Values of removed organic loads and effluent concentrations were interpreted on the basis of the COD fractionation of influent wastewater assessed through respirometric tests. The average removal efficiency of total COD was 91 %. It was not possible to reach an higher efficiency because of the unbiodegradable soluble fraction of COD (about 10% of total COD on average during the whole year), that cannot be removed by biological process or settling. Due to the high empty space offered by the plastic carriers, FBBRs did not require backwashing during the seasonal operationing period of the plant (September-March). In comparison with other treatment systems the FBBR configuration allows one to ensure a simple management, to obtain high efficiency also in the case of higher fluctuations of flow and loads and to guarantee a good settleability of the sludge, without bulking problems.  相似文献   

3.
两种流态区域条件下的井流问题的解析解   总被引:6,自引:1,他引:5  
常安定  郭建青  王洪胜 《水利学报》2000,31(6):0049-0054
文中针对在均质等厚、无限分布的承压含水层中,以定流量抽水时,抽水主孔附近含水层会存在非线性流区域的问题,根据水量平衡原理,分别建立了线性流区域和非线性流区域的水流运动方程,采用Boltzmann变换对其求解,得到了计算两个区域中任一点的渗流速度和水位降深的解析公式。  相似文献   

4.
5.
生物生态法是目前国内外治理河湖水体富营养化的主要方法,但使用单一净化装置的处理效果均不甚理想,故将生物生态法中的生物膜法、曝气富氧法和生态浮床法相结合,开发了一套新型膜曝气生物膜-生态浮床立式组合净化装置。试验结果表明,组合装置较水体自净和单一净化装置可显著提高水体净化效果。具体表现在:组合装置、生物膜反应器、生态浮床和河水自净作用对NH_4~+-N的去除率分别为98.0%、96.6%、66.6%和48.5%,组合装置较河水自净作用的去除率可提高49.5%;对TN的去除率分别为34.7%、26.9%、19.3%和9.6%,去除率可提高25.1%;对TP的去除率分别为60.7%、33.9%、86.9%和38.5%,去除率可提高22.2%;对COD_(Mn)的去除率分别为78.3%、53.1%、58.4%和40.2%,去除率可提高38.1%。同时,组合装置对叶绿素a同样具有最强的抑制作用且可大幅提高水体透明度,减少水体黑臭现象的发生,这一结果为该装置应用于受污染河道的水体修复提供了科学依据。  相似文献   

6.
An Imhoff tank was reconstructed into a 250 m3 UASB reactor in order to treat a malting plant wastewater. The UASB was inoculated with sludge from an anaerobic lagoon used for slaughterhouse wastewater treatment. After two months of operation the reactor achieved full load with an HRT of 17 h, a COD removal higher than 80% and a biogas production of 300 m3/day (77% average methane content), with an organic loading rate of 3.6 kgCOD/m3.d (0.24 kgCOD/kgVSS.d). A yield coefficient of 0.09 gVSS/gCODrem was found from a mass balance. The fat present in the inoculated sludge (48 mg/gSSV) did not affect the start up performance. Sludge from the inoculum with high content of fat (270 mg/gSSV), was separated by flotation in the first week of operation. The COD removal efficiency was scarcely influenced by the reactor operation temperature (17-25 degrees C).  相似文献   

7.
Treatment of swine wastewater containing strong nitrogen was attempted in a full-scale SBR. The strongest swine wastewater was discharged from a slurry-type barn and called swine-slurry wastewater (SSW). Slightly weaker wastewater was produced from a scraper-type barn and called swine-urine wastewater (SUW). TCOD, NH4+-N and TSS in raw SSW were 23,000-72,000 mg/L, 3,500-6,000 mg/L and 17,000-50,000 mg/L, respectively. A whole cycle of SBR consists of 4 sub-cycles with anoxic period of 1 hr and aerobic period of 3 hr. The maximum loading rates of both digested-SSW and SUW were similar to 0.22 kg NH4+-N/m3/day whereas the maximum loading rates of raw SSW was up to 0.35 TN/m3/day on keeping the effluent quality of 60 TN mg/l. The VFAs portion of SCOD in raw SSW was about more than 60%. The VFAs in SUW and digested-SSW were about 22% and 15%, respectively. NH4+-N and PO4(3-)-P in SSW were removed efficiently compared to those in digested-SSW and DUW because SSW had high a C/N ratio and readily biodegradable organic. High concentration of organic was useful to enhance denitrification and P uptake. Also the amount of external carbon for denitrification was reduced to 5% and 10% of those for digested-SSW and SUW.  相似文献   

8.
A combined process consisted of a Moving-Bed Biofilm Reactor (MBBR) and chemical coagulation was investigated for textile wastewater treatment. The pilot scale MBBR system is composed of three MBBRs (anaerobic, aerobic-1 and aerobic-2 in series), each reactor was filled with 20% (v/v) of polyurethane-activated carbon (PU-AC) carrier for biological treatment followed by chemical coagulation with FeCl2. ln the MBBR process, 85% of COD and 70% of color (influent COD = 807.5 mg/L and color = 3,400 PtCo unit) were removed using relatively low MLSS concentration and short hydraulic retention time (HRT = 44 hr). The biologically treated dyeing wastewater was subjected to chemical coagulation. After coagulation with FeCl2, 95% of COD and 97% of color were removed overall. The combined process of MBBR and chemical coagulation has promising potential for dyeing wastewater treatment.  相似文献   

9.
Surface-modified hollow-fiber membranes were prepared by radiation-induced grafting of an epoxy-group-containing monomer, glycidylmethacrylate (GMA), onto a polyethylene-based fiber (PE-fiber). The epoxy ring of GMA was opened by introduction of diethylamine (DEA). The bacterial adhesivity to this material (DEA-fiber) was tested by immersion into a nitrifying bacterial suspension. The initial adhesion rates and the amount of attached bacteria of the DEA-fiber were 6-10-fold and 3-fold greater than those of the PE fiber, respectively. A membrane-aerated biofilm reactor (MABR) composed of DEA fibers was developed for partial nitrification with nitrite accumulation. Prior to the nitrification test, it was confirmed that the oxygen supply rate (OSR) was proportional to air pressure up to 100 kPa, allowing easy control of oxygen supply. Stable nitrite accumulation was observed in the partial nitrification test at a fixed oxygen supply throughout the operation period, indicating that oxygen was consumed only by ammonia oxidizers. Furthermore, it was demonstrated that oxygen utilization efficiency (OUE) in the ammonia oxidation process was nearly 100% after 300 h incubation.  相似文献   

10.
Methanotrophic biodegradation using the membrane-aerated biofilm reactor (MABR) is a technology offering several advantages over both conventional biofilm reactors and suspended-cell processes. In this study the oxidation efficiency of a methanotrophic biofilm in a 1.5 litre MABR was investigated. Measurements of oxygen and methane uptake rates together with biofilm thickness were taken for developing biofilms. It was found that the specific rate of metabolic activity of the biofilm was unusually high as determined by the methane and oxygen uptake rates. Microbial activity stratification was evident and the location of stratified layers of oxygen consuming components of the consortium could be manipulated via the intra-membrane oxygen pressure.  相似文献   

11.
A biofilm system operated for enhanced biological phosphorus removal is evaluated using a mathematical model. The influence of the influent COD concentration and the biofilm thickness are investigated. In an activated sludge system increasing the influent COD will result in a decrease of the effluent phosphorus concentration. However, in a biofilm system above a certain influent COD concentration not all COD supplied in the influent can be taken up during the anaerobic period. Other heterotrophic bacteria will then dominate the biofilm resulting in an increase of the effluent phosphorus concentration. A larger biofilm thickness will result in an increase of the total mass of polyphosphate-accumulating organisms in the system. However, it is shown that a larger biofilm thickness results in higher effluent phosphorus concentrations. The mathematical model presented is based on the IAWQ Model No. 2 modified for the biofilm system. Mass transport in the biofilm is modeled one-dimensionally. Removal of biomass through backwashing and, thus, removal of phosphorus, is included in the mathematical model. Simulations were used to explain experimental observations.  相似文献   

12.
Methane would potentially be an inexpensive, widely available electron donor for denitrification of wastewaters poor in organics. Currently, no methanotrophic microbe is known to denitrify. However, aerobic methane oxidation coupled to denitrification (AME-D) has been observed in several laboratory studies. In the AME-D process, aerobic methanotrophs oxidise methane and release organic metabolites and lysis products, which are used by coexisting denitrifiers as electron donors for denitrification. Due to the presence of oxygen, the denitrification efficiency in terms of methane-to-nitrate consumption is usually low. To improve this efficiency the use of a membrane biofilm reactor was investigated. The denitrification efficiency of an AME-D culture in (1) a suspended growth reactor, and (2) a membrane biofilm reactor was studied. The methane-to-nitrate consumption ratio for the suspended culture was 8.7. For the membrane-attached culture the ratio was 2.2. The results clearly indicated that the membrane-attached biofilm was superior to the suspended culture in terms of denitrification efficiency. This study showed that for practical application of the AME-D process, focus should be placed on development of a biofilm reactor.  相似文献   

13.
Bioaugmentation by introduction of catabolic genes residing on mobile genetic elements into the microbial community of a soil or wastewater environment might be an alternative to bioaugmentation by addition of bacterial cells with chromosomally encoded catabolic genes. This study investigates the possibility to enhance degradation of the xenobiotic model compound 2,4-dichlorophenoxyacetic acid in a sequencing batch biofilm reactor (SBBR) by using the conjugative plasmid pJP4 carrying genes for 2,4-D degradation. After introduction of a plasmid donor strain to a lab-scale SBBR operated without 2,4-D, the number of plasmid-carrying cells first dropped, and then increased after switching to 2,4-D as the sole carbon source. The donor cells were unable to grow in the applied synthetic wastewater with 2,4-D as the sole carbon source. Transconjugants could be detected both by culture-dependent and culture-independent methods in the 2,4-D degrading biofilm. In contrast to 90% 2,4-D degradation in the bioaugmented reactor within 40 h, a control reactor which had not received the plasmid still contained 60% of the initial 2,4-D concentration after 90 h. This experiment clearly demonstrates the introduction of 2,4-D degradative genes into a microbial biofilm and indicates that horizontal gene transfer is a promising tool for bioaugmentation of reactors treating wastewater.  相似文献   

14.
A two-stage moving bed biofilm reactor (MBBR) was applied at the Bundamba advanced water treatment plant (AWTP) (Queensland, Australia) to treat the reverse osmosis concentrate (ROC) for inorganic nutrient removal. One of the operational challenges for the system was to cope with the large fluctuations of the ROC flow. This study investigated the decay rates of ammonia-oxidizing bacteria (AOB) and nitrite-oxidizing bacteria (NOB) and biofilm detachment in MBBR during starvation for up to one month. An intermittent aeration strategy of 15 min aeration every 6 h was applied. This study also evaluated the activity recovery of both AOB and NOB after normal operation was resumed. The results showed that the activity loss of AOB and NOB was relatively minor (<20%) within 10 days of starvation, which ensured relatively quick recovery of ammonium removal when normal operation resumed. In contrast, the AOB and NOB activity loss reached 60-80% when the starvation time was longer than 20 days, resulting in slower recovery of ammonium removal after starvation. Starvation for less than 20 days didn't result in an apparent biomass detachment from carriers.  相似文献   

15.
The H(2)-based membrane biofilm reactor was used to remove nitrate from synthetic ion-exchange brine at NaCl concentrations from ~3 to 30 g/L. NaCl concentrations below 20 g/L did not affect the nitrate removal flux as long as potassium was available to generate osmotic tolerance for high sodium, the H(2) pressure was adequate, and membrane fouling was eliminated. Operating pHs of 7-8 and periodic citric acid washes controlled membrane fouling and enabled reactor operation for 650 days. At 30 psig H(2) and high nitrate loading rates of 15 to 80 g/m(2) d, nitrate removal fluxes ranged from 2.5 to ~6 g/m(2) d, which are the highest fluxes observed when treating 30 g/L IX brine. However, percent removals were low, and the H(2) pressure probably limited the removal flux.  相似文献   

16.
改进型移动床生物膜反应器处理有机废水的试验   总被引:1,自引:0,他引:1       下载免费PDF全文
改进型移动床生物膜反应器(CMCBR)是在普通移动床生物膜反应器中引入导流板,使填料在全池循环移动,消除了普通移动床生物膜反应器的死角。在CMCBR处理模拟生活污水的试验中,研究了有机物的去除效果,考察了容积负荷、水力停留时间、冲击负荷等参数对处理效果的影响。试验发现,在填料填充比例为50%(体积比),进水COD质量浓度为320~550mg/L,水力停留时间为3 h的条件下,出水COD质量浓度小于100 mg/L,达到国家污水综合排放标准的一级标准。反应器具有较强的抗冲击负荷能力,出水水质稳定。  相似文献   

17.
The aim was to investigate the inhibitory effect of the xenobiotic 1,2-DCA on nitrification during the cometabolic degradation in a packed bed nitrifying biofilm reactor. This xenobiotic inhibited primarily the conversion of NH4-N to hydroxylamine by binding to the AMO enzyme. It had no inhibitory effect on the conversion of nitrite to nitrate. At high NH4-N loadings, the presence of 1,2-DCA inhibited NH4-N utilisation more severely than at low loadings. The suppressing effect of 1,2-DCA on NH4-N utilisation was found to be reversible due to the ability of cells to recover from inhibition. These results could fill a gap in the literature about the potential use of nitrifying biofilm systems for cometabolic treatment of 1,2-DCA and could be useful in the design of engineered 1,2-DCA remediation/treatment in biofilm reactors.  相似文献   

18.
Wine distillery wastewater, commonly called vinasses, was treated by an anaerobic moving bed biofilm reactor (AMBBR) with 32.9 litre available volume. The reactor was filled with 66% cylindrical polyethylene supports with density 0.84 g cm(-3) as a biofilm carrier. The reactor was sequentially mixed by a submerged centrifugal pump fixed to the bottom, and each mixing time just lasted 1.25 minutes. The organic loading rate (OLR) of the reactor were increased from 1.6 to 29.6 g sCOD l(-1) d(-1) (soluble chemical oxygen demands--sCOD) and hydraulic retention time (HRT) was decreased from 6.33 to 1.55 days accordingly. Soluble COD removal efficiency was 81.3-89.2% at an OLR of 29.6 g sCOD l(-1) d(-1). At the end of the experiment, 83.4% total biomass was attached on support and the specific density of support in the reactor was 0.93-1.05 g cm(-3), which increased by about 10.7-25% compared with that at the beginning of the study.  相似文献   

19.
杜向润  孙楠  王蒙 《水利学报》2015,46(11):1371-1377
粒子图像测速技术(PIV)作为一种无扰的全流场速度测量手段,在多相流研究领域具有较高的学术意义和实用价值。本研究针对曝气过程中的复杂气液两相流动,使用高速摄影机获取气液两相流流场的高帧图像,再通过图像预处理手段及PIV测速算法得到气液两相流速度场信息,并对不同工况下气液两相流的流态流速规律进行了研究分析。本文提出的图像预处理方案,通过采用图像的运动目标分割、降噪与反相等手段进行图像预处理,可以有效地减少后续速度场计算中的信息量及误差。研究结果为工业生产过程中有效提高曝气效率提供了重要的参考依据。  相似文献   

20.
双圆柱绕流伴随着流动分离、旋涡生成与脱落、旋涡间相互干扰等复杂问题,其流动形态和流动特征受圆柱相对位置影响。使用FLUENT流体软件,选取间距比1.75,2.5和4,在二维层流模型下,模拟了双圆柱串列、30°夹角错置、60°夹角错置和双圆柱并列绕流,分析了双柱绕流流态、旋涡脱落形态、升力、阻力系数随圆柱相对位置改变而变化的规律,并对比已有的试验成果和模拟成果,为桥梁建设和圆柱绕流理论研究提供了基础数据。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号