首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Pumped flow biofilm reactors (PFBR) for treating municipal wastewater   总被引:1,自引:0,他引:1  
A novel laboratory bench-scale sequencing batch biofilm reactor (SBBR) system was developed for the treatment of synthetic domestic strength wastewater, comprising two side-by-side 18 l reactor tanks, each containing a plastic biofilm media module. Aerobic and anoxic conditions in the biofilms were effected by intermittent alternate pumping of wastewater between the two reactors. With a media surface area loading rate of 4.2 g chemical oxygen demand (COD)/m2.d, the average influent COD, total nitrogen (TN) and ammonium-nitrogen (NH4-N) concentrations of 1021 mg/l, 97 mg/l and 54 mg/l, respectively, reduced to average effluent concentrations of 72 mg COD/l, 17.8 mg TN/l, and 5.5 mg NH4-N /l. Using a similar alternating biofilm exposure arrangement, a 16 person equivalent pilot (PE) plant was constructed at a local village treatment works to remove organic carbon from highly variable settled municipal wastewater and comprised two reactors, one positioned above the other, each containing a module of cross-flow plastic media with a surface area of 100 m2. Two different pumping sequences (PS) in the aerobic phase were examined where the average influent COD concentrations were 220 and 237 mg/l for PS1 and PS2, respectively, and the final average effluent COD was consistently less than 125 mg/l--the European Urban Wastewater Treatment Directive limit--with the best performance occurring in PS1. Nitrification was evident during both PS1 and PS2 studies. A 300 PE package treatment plant was designed based on the bench-scale and pilot-scale studies, located at a local wastewater treatment works and treated municipal influent with average COD, suspended solids (SS) and TN concentrations of 295, 183 and 15 mg/l, respectively resulting in average effluent concentrations of 67 mg COD/l, 17 mg SS/l and 9 mg TN/l. The SBBR systems performed well, and were simple to construct and operate.  相似文献   

2.
The treatment of winery wastewater was performed at full-scale applying a two-stage fixed bed biofilm reactor (FBBR) system for the discharge in the sewerage. The results of the first year of operation at the full-scale plant are presented. Values of removed organic loads and effluent concentrations were interpreted on the basis of the COD fractionation of influent wastewater assessed through respirometric tests. The average removal efficiency of total COD was 91 %. It was not possible to reach an higher efficiency because of the unbiodegradable soluble fraction of COD (about 10% of total COD on average during the whole year), that cannot be removed by biological process or settling. Due to the high empty space offered by the plastic carriers, FBBRs did not require backwashing during the seasonal operationing period of the plant (September-March). In comparison with other treatment systems the FBBR configuration allows one to ensure a simple management, to obtain high efficiency also in the case of higher fluctuations of flow and loads and to guarantee a good settleability of the sludge, without bulking problems.  相似文献   

3.
4.
An Imhoff tank was reconstructed into a 250 m3 UASB reactor in order to treat a malting plant wastewater. The UASB was inoculated with sludge from an anaerobic lagoon used for slaughterhouse wastewater treatment. After two months of operation the reactor achieved full load with an HRT of 17 h, a COD removal higher than 80% and a biogas production of 300 m3/day (77% average methane content), with an organic loading rate of 3.6 kgCOD/m3.d (0.24 kgCOD/kgVSS.d). A yield coefficient of 0.09 gVSS/gCODrem was found from a mass balance. The fat present in the inoculated sludge (48 mg/gSSV) did not affect the start up performance. Sludge from the inoculum with high content of fat (270 mg/gSSV), was separated by flotation in the first week of operation. The COD removal efficiency was scarcely influenced by the reactor operation temperature (17-25 degrees C).  相似文献   

5.
Treatment of swine wastewater containing strong nitrogen was attempted in a full-scale SBR. The strongest swine wastewater was discharged from a slurry-type barn and called swine-slurry wastewater (SSW). Slightly weaker wastewater was produced from a scraper-type barn and called swine-urine wastewater (SUW). TCOD, NH4+-N and TSS in raw SSW were 23,000-72,000 mg/L, 3,500-6,000 mg/L and 17,000-50,000 mg/L, respectively. A whole cycle of SBR consists of 4 sub-cycles with anoxic period of 1 hr and aerobic period of 3 hr. The maximum loading rates of both digested-SSW and SUW were similar to 0.22 kg NH4+-N/m3/day whereas the maximum loading rates of raw SSW was up to 0.35 TN/m3/day on keeping the effluent quality of 60 TN mg/l. The VFAs portion of SCOD in raw SSW was about more than 60%. The VFAs in SUW and digested-SSW were about 22% and 15%, respectively. NH4+-N and PO4(3-)-P in SSW were removed efficiently compared to those in digested-SSW and DUW because SSW had high a C/N ratio and readily biodegradable organic. High concentration of organic was useful to enhance denitrification and P uptake. Also the amount of external carbon for denitrification was reduced to 5% and 10% of those for digested-SSW and SUW.  相似文献   

6.
Surface-modified hollow-fiber membranes were prepared by radiation-induced grafting of an epoxy-group-containing monomer, glycidylmethacrylate (GMA), onto a polyethylene-based fiber (PE-fiber). The epoxy ring of GMA was opened by introduction of diethylamine (DEA). The bacterial adhesivity to this material (DEA-fiber) was tested by immersion into a nitrifying bacterial suspension. The initial adhesion rates and the amount of attached bacteria of the DEA-fiber were 6-10-fold and 3-fold greater than those of the PE fiber, respectively. A membrane-aerated biofilm reactor (MABR) composed of DEA fibers was developed for partial nitrification with nitrite accumulation. Prior to the nitrification test, it was confirmed that the oxygen supply rate (OSR) was proportional to air pressure up to 100 kPa, allowing easy control of oxygen supply. Stable nitrite accumulation was observed in the partial nitrification test at a fixed oxygen supply throughout the operation period, indicating that oxygen was consumed only by ammonia oxidizers. Furthermore, it was demonstrated that oxygen utilization efficiency (OUE) in the ammonia oxidation process was nearly 100% after 300 h incubation.  相似文献   

7.
Methanotrophic biodegradation using the membrane-aerated biofilm reactor (MABR) is a technology offering several advantages over both conventional biofilm reactors and suspended-cell processes. In this study the oxidation efficiency of a methanotrophic biofilm in a 1.5 litre MABR was investigated. Measurements of oxygen and methane uptake rates together with biofilm thickness were taken for developing biofilms. It was found that the specific rate of metabolic activity of the biofilm was unusually high as determined by the methane and oxygen uptake rates. Microbial activity stratification was evident and the location of stratified layers of oxygen consuming components of the consortium could be manipulated via the intra-membrane oxygen pressure.  相似文献   

8.
Bioaugmentation by introduction of catabolic genes residing on mobile genetic elements into the microbial community of a soil or wastewater environment might be an alternative to bioaugmentation by addition of bacterial cells with chromosomally encoded catabolic genes. This study investigates the possibility to enhance degradation of the xenobiotic model compound 2,4-dichlorophenoxyacetic acid in a sequencing batch biofilm reactor (SBBR) by using the conjugative plasmid pJP4 carrying genes for 2,4-D degradation. After introduction of a plasmid donor strain to a lab-scale SBBR operated without 2,4-D, the number of plasmid-carrying cells first dropped, and then increased after switching to 2,4-D as the sole carbon source. The donor cells were unable to grow in the applied synthetic wastewater with 2,4-D as the sole carbon source. Transconjugants could be detected both by culture-dependent and culture-independent methods in the 2,4-D degrading biofilm. In contrast to 90% 2,4-D degradation in the bioaugmented reactor within 40 h, a control reactor which had not received the plasmid still contained 60% of the initial 2,4-D concentration after 90 h. This experiment clearly demonstrates the introduction of 2,4-D degradative genes into a microbial biofilm and indicates that horizontal gene transfer is a promising tool for bioaugmentation of reactors treating wastewater.  相似文献   

9.
Methane would potentially be an inexpensive, widely available electron donor for denitrification of wastewaters poor in organics. Currently, no methanotrophic microbe is known to denitrify. However, aerobic methane oxidation coupled to denitrification (AME-D) has been observed in several laboratory studies. In the AME-D process, aerobic methanotrophs oxidise methane and release organic metabolites and lysis products, which are used by coexisting denitrifiers as electron donors for denitrification. Due to the presence of oxygen, the denitrification efficiency in terms of methane-to-nitrate consumption is usually low. To improve this efficiency the use of a membrane biofilm reactor was investigated. The denitrification efficiency of an AME-D culture in (1) a suspended growth reactor, and (2) a membrane biofilm reactor was studied. The methane-to-nitrate consumption ratio for the suspended culture was 8.7. For the membrane-attached culture the ratio was 2.2. The results clearly indicated that the membrane-attached biofilm was superior to the suspended culture in terms of denitrification efficiency. This study showed that for practical application of the AME-D process, focus should be placed on development of a biofilm reactor.  相似文献   

10.
The H(2)-based membrane biofilm reactor was used to remove nitrate from synthetic ion-exchange brine at NaCl concentrations from ~3 to 30 g/L. NaCl concentrations below 20 g/L did not affect the nitrate removal flux as long as potassium was available to generate osmotic tolerance for high sodium, the H(2) pressure was adequate, and membrane fouling was eliminated. Operating pHs of 7-8 and periodic citric acid washes controlled membrane fouling and enabled reactor operation for 650 days. At 30 psig H(2) and high nitrate loading rates of 15 to 80 g/m(2) d, nitrate removal fluxes ranged from 2.5 to ~6 g/m(2) d, which are the highest fluxes observed when treating 30 g/L IX brine. However, percent removals were low, and the H(2) pressure probably limited the removal flux.  相似文献   

11.
A two-stage moving bed biofilm reactor (MBBR) was applied at the Bundamba advanced water treatment plant (AWTP) (Queensland, Australia) to treat the reverse osmosis concentrate (ROC) for inorganic nutrient removal. One of the operational challenges for the system was to cope with the large fluctuations of the ROC flow. This study investigated the decay rates of ammonia-oxidizing bacteria (AOB) and nitrite-oxidizing bacteria (NOB) and biofilm detachment in MBBR during starvation for up to one month. An intermittent aeration strategy of 15 min aeration every 6 h was applied. This study also evaluated the activity recovery of both AOB and NOB after normal operation was resumed. The results showed that the activity loss of AOB and NOB was relatively minor (<20%) within 10 days of starvation, which ensured relatively quick recovery of ammonium removal when normal operation resumed. In contrast, the AOB and NOB activity loss reached 60-80% when the starvation time was longer than 20 days, resulting in slower recovery of ammonium removal after starvation. Starvation for less than 20 days didn't result in an apparent biomass detachment from carriers.  相似文献   

12.
The aim was to investigate the inhibitory effect of the xenobiotic 1,2-DCA on nitrification during the cometabolic degradation in a packed bed nitrifying biofilm reactor. This xenobiotic inhibited primarily the conversion of NH4-N to hydroxylamine by binding to the AMO enzyme. It had no inhibitory effect on the conversion of nitrite to nitrate. At high NH4-N loadings, the presence of 1,2-DCA inhibited NH4-N utilisation more severely than at low loadings. The suppressing effect of 1,2-DCA on NH4-N utilisation was found to be reversible due to the ability of cells to recover from inhibition. These results could fill a gap in the literature about the potential use of nitrifying biofilm systems for cometabolic treatment of 1,2-DCA and could be useful in the design of engineered 1,2-DCA remediation/treatment in biofilm reactors.  相似文献   

13.
Wine distillery wastewater, commonly called vinasses, was treated by an anaerobic moving bed biofilm reactor (AMBBR) with 32.9 litre available volume. The reactor was filled with 66% cylindrical polyethylene supports with density 0.84 g cm(-3) as a biofilm carrier. The reactor was sequentially mixed by a submerged centrifugal pump fixed to the bottom, and each mixing time just lasted 1.25 minutes. The organic loading rate (OLR) of the reactor were increased from 1.6 to 29.6 g sCOD l(-1) d(-1) (soluble chemical oxygen demands--sCOD) and hydraulic retention time (HRT) was decreased from 6.33 to 1.55 days accordingly. Soluble COD removal efficiency was 81.3-89.2% at an OLR of 29.6 g sCOD l(-1) d(-1). At the end of the experiment, 83.4% total biomass was attached on support and the specific density of support in the reactor was 0.93-1.05 g cm(-3), which increased by about 10.7-25% compared with that at the beginning of the study.  相似文献   

14.
双圆柱绕流伴随着流动分离、旋涡生成与脱落、旋涡间相互干扰等复杂问题,其流动形态和流动特征受圆柱相对位置影响。使用FLUENT流体软件,选取间距比1.75,2.5和4,在二维层流模型下,模拟了双圆柱串列、30°夹角错置、60°夹角错置和双圆柱并列绕流,分析了双柱绕流流态、旋涡脱落形态、升力、阻力系数随圆柱相对位置改变而变化的规律,并对比已有的试验成果和模拟成果,为桥梁建设和圆柱绕流理论研究提供了基础数据。  相似文献   

15.
Nitrate and pesticide contaminated ground- and surface-waters have been found around the world as a result of the use of these compounds in agricultural activities. In this study we investigated a biological treatment method to simultaneously remove nitrate and pesticides from contaminated water. Methane was supplied as the sole source of carbon to the microbial culture. A methane-fed membrane biofilm reactor (M-MBfR) was developed in which the methane was supplied through hollow-fiber membranes to a biofilm growing on the membrane surface. A methane-oxidizing culture enriched from activated sludge was used as inoculum for the experiments. Removal of nitrate and the four pesticides atrazine, aldicarb, alachlor, and malathion was examined both in suspended culture and in the M-MBfR. The maximum denitrification rate with suspended culture was 36.8 mg N gVSS(-1) d(-1). With the M-MBfR setup, a hydraulic retention time of approximately one hour was required to completely remove an incoming nitrate concentration of about 20 mg NO3-N l(-1). The microbial culture could remove three of the pesticides (aldicarb, alachlor, and malathion). However, no atrazine removal was observed. The removal rates of both nitrate and pesticides were similar in suspended culture and in membrane-attached biofilm.  相似文献   

16.
Nitrogen can be eliminated effectively from sludge digester effluents by anaerobic ammonium oxidation (anammox), but 55-60% of the ammonium must first be oxidized to nitrite. Although a continuous flow stirred tank reactor (CSTR) with suspended biomass could be used, its hydraulic dilution rate is limited to 0.8-1 d(-1) (30 degrees C). Higher specific nitrite production rates can be achieved by sludge retention, as shown here for a moving-bed biofilm reactor (MBBR) with Kaldnes carriers on laboratory and pilot scales. The maximum nitrite production rate amounted to 2.7 gNO2-Nm(-2)d(-1) (3 gO2m(-3)d(-1), 30.5 degrees C), thus doubling the dilution rate compared to CSTR operation with suspended biomass for a supernatant with 700 gNH4-Nm(-3). Whenever the available alkalinity was fully consumed, an optimal amount of nitrite was produced. However, a significant amount of nitrate was produced after 11 months of operation, making the effluent unsuitable for anaerobic ammonium oxidation. Because the sludge retention time (SRT) is relatively long in biofilm systems, slow growth of nitrite oxidizers occurs. None of the selection criteria applied - a high ammonium loading rate, high free ammonia or low oxygen concentration - led to selective suppression of nitrite oxidation. A CSTR or SBR with suspended biomass is consequently recommended for full-scale operation.  相似文献   

17.
Operation of a nitrite-type airlift reactor at low DO concentration.   总被引:7,自引:0,他引:7  
Laboratory scale experiments were performed to evaluate the feasibility and potential of nitrite-type nitrification process with an airlift reactor having aerobic granular biomass. Oxygen limitation was selected as the main control parameter for inhibiting the growth of nitrite oxidizer and thus achieving only nitritation. To enhance granule formation, seeding of methanogenic anaerobic granules was used to serve as an initial carrier material. After 90 days of operation at low DO concentration of less than 1.0 mg/l, the maximum nitrite conversion rate of 2.6 g NO2-N/L/d could be achieved. During the continuing year-long stable operation, the granular mass of nitritation granules increased to about 15 g VSS/L with an average granule size of 0.7 mm. Nitrate-N concentration was observed to be below 10 mg/L during the whole operational period. From the results of the experiments, it is concluded that a granule-type airlift reactor with DO control is feasible for achieving stable nitritation.  相似文献   

18.
This paper presents the behaviour of a full-scale expanded bed reactor (160 m3) with overlaid anaerobic and aerobic zones used for municipal wastewater treatment. The research was carried out in two experimental steps: anaerobic and anaerobic-aerobic conditions, and the experimental results presented in this paper refer to four months of reactor operation. In the anaerobic condition, after inoculation and 60 days of operation, the reactor treating 3.40 kg CODm(-3)d(-1) for thetaH of 2.69 h, reached mean removal efficiencies of 76% for BOD, 72% for COD, and 80% for TSS, when the effluent presented mean values of 225 mg.L(-1) of COD, 98 mg.L(-1) of BOD and 35 mg.L(-1) of TSS. Under these conditions, for nitrogen loading of 0.27 kgN.m(-3)d(-1), the reactor generated an effluent with mean N-org. of 8 mg.L(-1) and N-ammon. of 37 mg.L(-1), demonstrating high potential of ammonification. For the anaerobic-aerobic condition (118th day) the system was operated with thetaH of 5.38 h presented mean removal efficiencies of 84% for BOD, 79% for COD, 76% for TSS, and 30% for TKN. The reactor's operation time was less than two months, which was not long enough to reach nitrification. Regarding the obtained results, this research confirmed that this reactor is configured as a flexible and adequate alternative for the treatment of sewage, requiring relatively small area and only thetaH of 10 h that can be adjusted to the local circumstances.  相似文献   

19.
The objective of this study was to develop an integrated nitrogen treatment system using autotrophic organisms. A treatment system consists of an aerobic hollow-fiber membrane biofilm reactor (HfMBR) and anaerobic HfMBR. In the aerobic HfMBR, a mixture gas of air and O2 was supplied through the fibers for nitrification. Denitrification occurred in the anaerobic HfMBR using H2 as the electron donor. The treatment system was continuously operated for 190 days. NH4-N removal efficiencies ranging from 95% to 97% were achieved at NH4-N concentrations of influent ranging from 50 to 100 mg N/L. When glucose was added to the influent, the simultaneous nitrification and denitrification occurred in the aerobic HfMBR, and nitrogen removal rates were changed according to the COD/NH4-N ratio of influent. In the anaerobic HfMBR, autotrophic denitrification using H2 occurred and the removal rates achieved in this study were 23-58 mg N/m2 d. In this study, the achieved removal efficiency was lower than other study findings; however, the result suggested that this hybrid HfMBR system can be used effectively for nitrogen removal in oligotrophic water.  相似文献   

20.
In this study, a simple dual sludge process was developed for small sewage treatment. It is a hybrid system that consists of upflow multi-layer bioreactor (UMBR) as anaerobic and anoxic reactor with suspended growth microorganisms and post aerobic biofilm reactor with inclined plates. UMBR is a multifunction reactor that acts as primary sedimentation tank, anaerobic reactor, anoxic reactor, and thickener. The sludge blanket in the UMBR is maintained at a constant level by automatic control so that clear water (30 mg-SS/L) can flow into the post aerobic biofilm reactor. It leads to improving performance of the biofilm reactor due to preventing of excess microbial attachment on the media surface and no requirment for a large clarifier caused by low solid loading. The HRT in the UMBR and the aerobic biofilm reactor were about 5.8 h and 6.4 h, respectively. The temperature in the reactor during this study varied from 12.5 degrees C to 28.3 degrees C. The results obtained from this study show that effluent concentrations of TCOD, TBOD, SS, TN, and TP were 29.7 mg/L, 6.0 mg/L, 10.3 mg/L, 12.0 mg/L, and 1.8 mg/L, which corresponded to a removal efficiency of 92.7%, 96.4%, 96.4%, 74.9%, and 76.5%, respectively. The sludge biomass index (SBI) of the excess sludge in the UMBR was about 0.55, which means that the sludge in the UMBR was sufficiently stabilized and may not require further treatment prior to disposal.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号