首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We propose a novel time-changed Lévy LIBOR (London Interbank Offered Rate) market model for jointly pricing of caps and swaptions. The time changes are split into three components. The first component allows matching the volatility term structure, the second generates stochastic volatility, and the third accommodates for stochastic skew. The parsimonious model is flexible enough to accommodate the behavior of both caps and swaptions. For the joint estimation we use a comprehensive data set spanning the financial crisis of 2007–2010. We find that, even during this period, neither market is as fragmented as suggested by the previous literature.  相似文献   

2.
The Lévy term structure model due to Eberlein and Raible is extended to non-homogeneous driving processes. The classes of equivalent martingale and local martingale measures for various filtrations are characterized. It turns out that in a number of standard situations the martingale measure is unique.Received: May 2004, Mathematics Subject Classification (2000): 60H30, 91B28, 60G51JEL Classification: E43, G13Work supported in part by the European Communitys Human Potential Programme under contract HPRN-CT-2000-00100, DYNSTOCH.  相似文献   

3.
In this paper we consider the problem of hedging an arithmetic Asian option with discrete monitoring in an exponential Lévy model by deriving backward recursive integrals for the price sensitivities of the option. The procedure is applied to the analysis of the performance of the delta and delta–gamma hedges in an incomplete market; particular attention is paid to the hedging error and the impact of model error on the quality of the chosen hedging strategy. The numerical analysis shows the impact of jump risk on the hedging error of the option position, and the importance of including traded options in the hedging portfolio for the reduction of this risk.  相似文献   

4.
The aim of this paper is to introduce the notion of symmetry in a Lévy market. This notion appears as a particular case of a general known relation between prices of put and call options, of both the European and the American type, which is also reviewed in the paper, and that we call put–call duality. Symmetric Lévy markets have the distinctive feature of producing symmetric smile curves, in the log of strike/futures prices.

Put–call duality is obtained as a consequence of a change of the risk neutral probability measure through Girsanov's theorem, when considering the discounted and reinvested stock price as the numeraire. Symmetry is defined when a certain law before and after the change of measure through Girsanov's theorem coincides. A parameter characterizing the departure from symmetry is introduced, and a necessary and sufficient condition for symmetry to hold is obtained, in terms of the jump measure of the Lévy process, answering a question raised by Carr and Chesney (American put call symmetry, preprint, 1996 Carr, P and Chesney, M. 1996. American put call symmetry. preprint [Google Scholar]). Some empirical evidence is shown, supporting that, in general, markets are not symmetric.  相似文献   

5.
One method to compute the price of an arithmetic Asian option in a Lévy driven model is based on an exponential functional of the underlying Lévy process: If we know the distribution of the exponential functional, we can calculate the price of the Asian option via the inverse Laplace transform. In this paper, we consider pricing Asian options in a model driven by a general meromorphic Lévy process. We prove that the exponential functional is equal in distribution to an infinite product of independent beta random variables, and its Mellin transform can be expressed as an infinite product of gamma functions. We show that these results lead to an efficient algorithm for computing the price of the Asian option via the inverse Mellin–Laplace transform, and we compare this method with some other techniques.  相似文献   

6.
We suggest two new fast and accurate methods, the fast Wiener–Hopf (FWH) method and the iterative Wiener–Hopf (IWH) method, for pricing barrier options for a wide class of Lévy processes. Both methods use the Wiener–Hopf factorization and the fast Fourier transform algorithm. We demonstrate the accuracy and fast convergence of both methods using Monte Carlo simulations and an accurate finite difference scheme, compare our results with those obtained by the Cont–Voltchkova method, and explain the differences in prices near the barrier. The first author is supported, in part, by grant RFBR 09-01-00781.  相似文献   

7.
In this paper we propose a general derivative pricing framework that employs decoupled time-changed (DTC) Lévy processes to model the underlying assets of contingent claims. A DTC Lévy process is a generalized time-changed Lévy process whose continuous and pure jump parts are allowed to follow separate random time scalings; we devise the martingale structure for a DTC Lévy-driven asset and revisit many popular models which fall under this framework. Postulating different time changes for the underlying Lévy decomposition allows the introduction of asset price models consistent with the assumption of a correlated pair of continuous and jump market activity rates; we study one illustrative DTC model of this kind based on the so-called Wishart process. The theory we develop is applied to the problem of pricing not only claims that depend on the price or the volatility of an underlying asset, but also more sophisticated derivatives whose payoffs rely on the joint performance of these two financial variables, such as the target volatility option. We solve the pricing problem through a Fourier-inversion method. Numerical analyses validating our techniques are provided. In particular, we present some evidence that correlating the activity rates could be beneficial for modeling the volatility skew dynamics.  相似文献   

8.
We present a fast and accurate method to compute exponential moments of the discretely observed maximum of a Lévy process. The method involves a sequential evaluation of Hilbert transforms of expressions involving the characteristic function of the (Esscher-transformed) Lévy process. It can be discretized with exponentially decaying errors of the form O(exp (−aM b )) for some a,b>0, where M is the number of discrete points used to compute the Hilbert transform. The discrete approximation can be efficiently implemented using the Toeplitz matrix–vector multiplication algorithm based on the fast Fourier transform, with total computational cost of O(NMlog (M)), where N is the number of observations of the maximum. The method is applied to the valuation of European-style discretely monitored floating strike, fixed strike, forward start and partial lookback options (both newly written and seasoned) in exponential Lévy models. This research was supported by the National Science Foundation under grant DMI-0422937.  相似文献   

9.
For a family of functions G, we define the G-variation, which generalizes power variation; G-variation swaps, which pay the G-variation of the returns on an underlying share price F; and share-weighted G-variation swaps, which pay the integral of F with respect to G-variation. For instance, the case G(x)=x 2 reduces these notions to, respectively, quadratic variation, variance swaps, and gamma swaps. We prove that a multiple of a log contract prices a G-variation swap, and a multiple of an FlogF contract prices a share-weighted G-variation swap, under arbitrary exponential Lévy dynamics, stochastically time-changed by an arbitrary continuous clock having arbitrary correlation with the Lévy driver, under integrability conditions. We solve for the multipliers, which depend only on the Lévy process, not on the clock. In the case of quadratic G and continuity of the underlying paths, each valuation multiplier is 2, recovering the standard no-jump variance and gamma-swap pricing results. In the presence of jump risk, however, we show that the valuation multiplier differs from 2, in a way that relates (positively or negatively, depending on the specified G) to the Lévy measure’s skewness. In three directions this work extends Carr–Lee–Wu, which priced only variance swaps. First, we generalize from quadratic variation to G-variation; second, we solve for not only unweighted but also share-weighted payoffs; and third, we apply these tools to analyze and minimize the risk in a family of hedging strategies for G-variation.  相似文献   

10.
In current financial markets negative interest rates have become rather persistent, while in theory it is often common practice to discard such rates as incredible and irrelevant. However, from a risk management perspective, it is crucially important to financial institutions to properly account for this phenomenon in their Asset Liability Management (ALM) studies. In this paper, we develop a coherent framework on how to best incorporate negative interest rates in these studies through a single curve stochastic term structure model and compare it to its multiple curve analogue. It turns out that, from the wide range of available single curve models, especially the Lévy Forward Price model (LFPM) of Eberlein and Özkan [The Lévy LIBOR model. Financ. Stoch., 2005, 9, 327–348] seems appropriate for ALM purposes. This paper describes an optimisation routine for calibrating this LFPM under the risk-neutral measure in both the single and multiple curve framework to the market prices of interest rate caplets with different strike rates, maturities and tenors. In addition, an empirical performance analysis is made of the single and multiple curve LFPM, where we include four deterministic volatility specifications and provide an explicit parametrisation of a piecewise homogeneity restriction with both deterministic and random breakpoints. This comparative analysis indicates that both the single and multiple curve LFPM is best adopted with the Linear-Exponential Volatility (LEV) specification and that deterministic breakpoints should be included, rather than random breakpoints.  相似文献   

11.
12.
In this paper, we shall propose a useful approach to evaluate concretely the MEMM (minimal entropy martingale measure) for the typical geometric Lévy processes such as compound Poisson, stable, VG (Variance Gamma), CGMY (Carr-Geman-Madan-Yor), NIG (Normal Inverse Gaussian), etc. In addition, we shall estimate the parameters of geometric Lévy processes and value the European call option and Asian call option using the Nikkei financial data.  相似文献   

13.
This paper deals with the characterization problem of the minimal entropy martingale measure (MEMM) for a Markov-modulated exponential Lévy model. This model is characterized by the presence of a background process modulating the risky asset price movements between different regimes or market environments. This allows to stress the strong dependence of financial assets price with structural changes in the market conditions. Our main results are obtained from the key idea of working conditionally on the modulator-factor process. This reduces the problem to studying the simpler case of processes with independent increments. Our work generalizes some previous works in the literature dealing with either the exponential Lévy case or the exponential-additive case.  相似文献   

14.
In this paper we propose a transform method to compute the prices and Greeks of barrier options driven by a class of Lévy processes. We derive analytical expressions for the Laplace transforms in time of the prices and sensitivities of single barrier options in an exponential Lévy model with hyper-exponential jumps. Inversion of these single Laplace transforms yields rapid, accurate results. These results are employed to construct an approximation of the prices and sensitivities of barrier options in exponential generalized hyper-exponential Lévy models. The latter class includes many of the Lévy models employed in quantitative finance such as the variance gamma (VG), KoBoL, generalized hyperbolic, and the normal inverse Gaussian (NIG) models. Convergence of the approximating prices and sensitivities is proved. To provide a numerical illustration, this transform approach is compared with Monte Carlo simulation in cases where the driving process is a VG and a NIG Lévy process. Parameters are calibrated to Stoxx50E call options.  相似文献   

15.
Peter Carr 《Quantitative Finance》2013,13(10):1115-1136
Vanilla (standard European) options are actively traded on many underlying asset classes, such as equities, commodities and foreign exchange (FX). The market quotes for these options are typically used by exotic options traders to calibrate the parameters of the (risk-neutral) stochastic process for the underlying asset. Barrier options, of many different types, are also widely traded in all these markets but one important feature of the FX options markets is that barrier options, especially double-no-touch (DNT) options, are now so actively traded that they are no longer considered, in any way, exotic options. Instead, traders would, in principle, like to use them as instruments to which they can calibrate their model. The desirability of doing this has been highlighted by talks at practitioner conferences but, to our best knowledge (at least within the realm of the published literature), there have been no models which are specifically designed to cater for this. In this paper, we introduce such a model. It allows for calibration in a two-stage process. The first stage fits to DNT options (or other types of double barrier options). The second stage fits to vanilla options. The key to this is to assume that the dynamics of the spot FX rate are of one type before the first exit time from a ‘corridor’ region but are allowed to be of a different type after the first exit time. The model allows for jumps (either finite activity or infinite activity) and also for stochastic volatility. Hence, not only can it give a good fit to the market prices of options, it can also allow for realistic dynamics of the underlying FX rate and realistic future volatility smiles and skews. En route, we significantly extend existing results in the literature by providing closed-form (up to Laplace inversion) expressions for the prices of several types of barrier options as well as results related to the distribution of first passage times and of the ‘overshoot’.  相似文献   

16.
This paper presents an asymptotic expansion of the ultimate ruin probability under Lévy insurance risks as the loading factor tends to zero. The expansion formula is obtained via the Edgeworth type expansion for compound geometric distributions. We give higher-order expansion of the ruin probability, any order of which is available in explicit form, and discuss a certain type of validity of the expansion. We shall also give applications to evaluation of the VaR-type risk measure due to ruin, and the scale function of spectrally negative Lévy processes.  相似文献   

17.
This paper extends the Fourier-cosine (COS) method to the pricing and hedging of variable annuities embedded with guaranteed minimum withdrawal benefit (GMWB) riders. The COS method facilitates efficient computation of prices and hedge ratios of the GMWB riders when the underlying fund dynamics evolve under the influence of the general class of Lévy processes. Formulae are derived to value the contract at each withdrawal date using a backward recursive dynamic programming algorithm. Numerical comparisons are performed with results presented in Bacinello et al. [Scand. Actuar. J., 2014, 1–20], and Luo and Shevchenko [Int. J. Financ. Eng., 2014, 2, 1–24], to confirm the accuracy of the method. The efficiency of the proposed method is assessed by making comparisons with the approach presented in Bacinello et al. [op. cit.]. We find that the COS method presents highly accurate results with notably fast computational times. The valuation framework forms the basis for GMWB hedging. A local risk minimisation approach to hedging intra-withdrawal date risks is developed. A variety of risk measures are considered for minimisation in the general Lévy framework. While the second moment and variance have been considered in existing literature, we show that the Value-at-Risk (VaR) may also be of interest as a risk measure to minimise risk in variable annuities portfolios.  相似文献   

18.
19.
20.
In this article, we will consider a multi-dimensional geometric L'evy process as a financial market model. We will first determine the minimal entropy martingale measure (MEMM); we will next derive the optimal strategy for the exponential utility maximization of terminal wealth concretely from the representation of the MEMM. JEL Classification: D46, D52, G12 AMS (2000) Subject Classification: 60G44, 60G51, 60G52,60H20, 60J75, 91B16, 91B28, 94A17  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号