首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this article, we propose new Monte Carlo methods for computing a single marginal likelihood or several marginal likelihoods for the purpose of Bayesian model comparisons. The methods are motivated by Bayesian variable selection, in which the marginal likelihoods for all subset variable models are required to compute. The proposed estimates use only a single Markov chain Monte Carlo (MCMC) output from the joint posterior distribution and it does not require the specific structure or the form of the MCMC sampling algorithm that is used to generate the MCMC sample to be known. The theoretical properties of the proposed method are examined in detail. The applicability and usefulness of the proposed method are demonstrated via ordinal data probit regression models. A real dataset involving ordinal outcomes is used to further illustrate the proposed methodology.  相似文献   

2.
Continuous-time stochastic volatility models are becoming an increasingly popular way to describe moderate and high-frequency financial data. Barndorff-Nielsen and Shephard (2001a) proposed a class of models where the volatility behaves according to an Ornstein–Uhlenbeck (OU) process, driven by a positive Lévy process without Gaussian component. These models introduce discontinuities, or jumps, into the volatility process. They also consider superpositions of such processes and we extend that to the inclusion of a jump component in the returns. In addition, we allow for leverage effects and we introduce separate risk pricing for the volatility components. We design and implement practically relevant inference methods for such models, within the Bayesian paradigm. The algorithm is based on Markov chain Monte Carlo (MCMC) methods and we use a series representation of Lévy processes. MCMC methods for such models are complicated by the fact that parameter changes will often induce a change in the distribution of the representation of the process and the associated problem of overconditioning. We avoid this problem by dependent thinning methods. An application to stock price data shows the models perform very well, even in the face of data with rapid changes, especially if a superposition of processes with different risk premiums and a leverage effect is used.  相似文献   

3.
In this paper, we introduce a threshold stochastic volatility model with explanatory variables. The Bayesian method is considered in estimating the parameters of the proposed model via the Markov chain Monte Carlo (MCMC) algorithm. Gibbs sampling and Metropolis–Hastings sampling methods are used for drawing the posterior samples of the parameters and the latent variables. In the simulation study, the accuracy of the MCMC algorithm, the sensitivity of the algorithm for model assumptions, and the robustness of the posterior distribution under different priors are considered. Simulation results indicate that our MCMC algorithm converges fast and that the posterior distribution is robust under different priors and model assumptions. A real data example was analyzed to explain the asymmetric behavior of stock markets.  相似文献   

4.
Effective linkage detection and gene mapping requires analysis of data jointly on members of extended pedigrees, jointly at multiple genetic markers. Exact likelihood computation is then often infeasible, but Markov chain Monte Carlo (MCMC) methods permit estimation of posterior probabilities of genome sharing among relatives, conditional upon marker data. In principle, MCMC also permits estimation of linkage analysis location score curves, but in practice effective MCMC samplers are hard to find. Although the whole-meiosis Gibbs sampler (M-sampler) performs well in some cases, for extended pedigrees and tightly linked markers better samplers are needed. However, using the M-sampler as a proposal distribution in a Metropolis-Hastings algorithm does allow genetic interference to be incorporated into the analysis.  相似文献   

5.
Bayesian and Frequentist Inference for Ecological Inference: The R×C Case   总被引:2,自引:1,他引:1  
In this paper we propose Bayesian and frequentist approaches to ecological inference, based on R × C contingency tables, including a covariate. The proposed Bayesian model extends the binomial-beta hierarchical model developed by K ing , R osen and T anner (1999) from the 2×2 case to the R × C case. As in the 2×2 case, the inferential procedure employs Markov chain Monte Carlo (MCMC) methods. As such, the resulting MCMC analysis is rich but computationally intensive. The frequentist approach, based on first moments rather than on the entire likelihood, provides quick inference via nonlinear least-squares, while retaining good frequentist properties. The two approaches are illustrated with simulated data, as well as with real data on voting patterns in Weimar Germany. In the final section of the paper we provide an overview of a range of alternative inferential approaches which trade-off computational intensity for statistical efficiency.  相似文献   

6.
This study investigated the performance of multiple imputations with Expectation-Maximization (EM) algorithm and Monte Carlo Markov chain (MCMC) method in missing data imputation. We compared the accuracy of imputation based on some real data and set up two extreme scenarios and conducted both empirical and simulation studies to examine the effects of missing data rates and number of items used for imputation. In the empirical study, the scenario represented item of highest missing rate from a domain with fewest items. In the simulation study, we selected a domain with most items and the item imputed has lowest missing rate. In the empirical study, the results showed there was no significant difference between EM algorithm and MCMC method for item imputation, and number of items used for imputation has little impact, either. Compared with the actual observed values, the middle responses of 3 and 4 were over-imputed, and the extreme responses of 1, 2 and 5 were under-represented. The similar patterns occurred for domain imputation, and no significant difference between EM algorithm and MCMC method and number of items used for imputation has little impact. In the simulation study, we chose environmental domain to examine the effect of the following variables: EM algorithm and MCMC method, missing data rates, and number of items used for imputation. Again, there was no significant difference between EM algorithm and MCMC method. The accuracy rates did not significantly reduce with increase in the proportions of missing data. Number of items used for imputation has some contribution to accuracy of imputation, but not as much as expected.  相似文献   

7.
This paper develops a pure simulation-based approach for computing maximum likelihood estimates in latent state variable models using Markov Chain Monte Carlo methods (MCMC). Our MCMC algorithm simultaneously evaluates and optimizes the likelihood function without resorting to gradient methods. The approach relies on data augmentation, with insights similar to simulated annealing and evolutionary Monte Carlo algorithms. We prove a limit theorem in the degree of data augmentation and use this to provide standard errors and convergence diagnostics. The resulting estimator inherits the sampling asymptotic properties of maximum likelihood. We demonstrate the approach on two latent state models central to financial econometrics: a stochastic volatility and a multivariate jump-diffusion models. We find that convergence to the MLE is fast, requiring only a small degree of augmentation.  相似文献   

8.
Markov Chain Monte Carlo (MCMC) methods are used to sample from complicated multivariate distributions with normalizing constants that may not be computable in practice and from which direct sampling is not feasible. A fundamental problem is to determine convergence of the chains. Propp & Wilson (1996) devised a Markov chain algorithm called Coupling From The Past (CFTP) that solves this problem, as it produces exact samples from the target distribution and determines automatically how long it needs to run. Exact sampling by CFTP and other methods is currently a thriving research topic. This paper gives a review of some of these ideas, with emphasis on the CFTP algorithm. The concepts of coupling and monotone CFTP are introduced, and results on the running time of the algorithm presented. The interruptible method of Fill (1998) and the method of Murdoch & Green (1998) for exact sampling for continuous distributions are presented. Novel simulation experiments are reported for exact sampling from the Ising model in the setting of Bayesian image restoration, and the results are compared to standard MCMC. The results show that CFTP works at least as well as standard MCMC, with convergence monitored by the method of Raftery & Lewis (1992, 1996).  相似文献   

9.
Markov chain Monte Carlo (MCMC) methods have become a ubiquitous tool in Bayesian analysis. This paper implements MCMC methods for Bayesian analysis of stochastic frontier models using the WinBUGS package, a freely available software. General code for cross-sectional and panel data are presented and various ways of summarizing posterior inference are discussed. Several examples illustrate that analyses with models of genuine practical interest can be performed straightforwardly and model changes are easily implemented. Although WinBUGS may not be that efficient for more complicated models, it does make Bayesian inference with stochastic frontier models easily accessible for applied researchers and its generic structure allows for a lot of flexibility in model specification.   相似文献   

10.
Recent developments in Markov chain Monte Carlo [MCMC] methods have increased the popularity of Bayesian inference in many fields of research in economics, such as marketing research and financial econometrics. Gibbs sampling in combination with data augmentation allows inference in statistical/econometric models with many unobserved variables. The likelihood functions of these models may contain many integrals, which often makes a standard classical analysis difficult or even unfeasible. The advantage of the Bayesian approach using MCMC is that one only has to consider the likelihood function conditional on the unobserved variables. In many cases this implies that Bayesian parameter estimation is faster than classical maximum likelihood estimation. In this paper we illustrate the computational advantages of Bayesian estimation using MCMC in several popular latent variable models.  相似文献   

11.
In this review paper, we discuss the theoretical background of multiple imputation, describe how to build an imputation model and how to create proper imputations. We also present the rules for making repeated imputation inferences. Three widely used multiple imputation methods, the propensity score method, the predictive model method and the Markov chain Monte Carlo (MCMC) method, are presented and discussed.  相似文献   

12.
董雪 《价值工程》2012,31(19):185-186
利用标准SV(SV-N)模型、厚尾SV(SV-T)模型对上证综合指数数据进行实证分析,采用MCMC方法及Gibbs抽样,应用WinBUGS软件对参数进行估计,比较参数估计值及DIC值,研究表明上证指数表现出强的波动持续性,SV模型能够很好地刻画出它的波动特征,且SV-T模型较优。  相似文献   

13.
We consider European options on a price process that follows the log-linear stochastic volatility model. Two stochastic integrals in the option pricing formula are costly to compute. We derive a central limit theorem to approximate them. At parameter settings appropriate to foreign exchange data our formulas improve computation speed by a factor of 1000 over brute force Monte Carlo making MCMC statistical methods practicable. We provide estimates of model parameters from daily data on the Swiss Franc to Euro and Japanese Yen to Euro over the period 1999–2002.  相似文献   

14.
This paper considers the problem of defining a time-dependent nonparametric prior for use in Bayesian nonparametric modelling of time series. A recursive construction allows the definition of priors whose marginals have a general stick-breaking form. The processes with Poisson-Dirichlet and Dirichlet process marginals are investigated in some detail. We develop a general conditional Markov Chain Monte Carlo (MCMC) method for inference in the wide subclass of these models where the parameters of the marginal stick-breaking process are nondecreasing sequences. We derive a generalised Pólya urn scheme type representation of the Dirichlet process construction, which allows us to develop a marginal MCMC method for this case. We apply the proposed methods to financial data to develop a semi-parametric stochastic volatility model with a time-varying nonparametric returns distribution. Finally, we present two examples concerning the analysis of regional GDP and its growth.  相似文献   

15.
This paper investigates whether there is time variation in the excess sensitivity of aggregate consumption growth to anticipated aggregate disposable income growth using quarterly US data over the period 1953–2014. Our empirical framework contains the possibility of stickiness in aggregate consumption growth and takes into account measurement error and time aggregation. Our empirical specification is cast into a Bayesian state‐space model and estimated using Markov chain Monte Carlo (MCMC) methods. We use a Bayesian model selection approach to deal with the non‐regular test for the null hypothesis of no time variation in the excess sensitivity parameter. Anticipated disposable income growth is calculated by incorporating an instrumental variables estimation approach into our MCMC algorithm. Our results suggest that the excess sensitivity parameter in the USA is stable at around 0.23 over the entire sample period. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

16.
Computationally efficient methods for Bayesian analysis of seemingly unrelated regression (SUR) models are described and applied that involve the use of a direct Monte Carlo (DMC) approach to calculate Bayesian estimation and prediction results using diffuse or informative priors. This DMC approach is employed to compute Bayesian marginal posterior densities, moments, intervals and other quantities, using data simulated from known models and also using data from an empirical example involving firms’ sales. The results obtained by the DMC approach are compared to those yielded by the use of a Markov Chain Monte Carlo (MCMC) approach. It is concluded from these comparisons that the DMC approach is worthwhile and applicable to many SUR and other problems.  相似文献   

17.
Inference for multiple-equation Markov-chain models raises a number of difficulties that are unlikely to appear in smaller models. Our framework allows for many regimes in the transition matrix, without letting the number of free parameters grow as the square as the number of regimes, but also without losing a convenient form for the posterior distribution. Calculation of marginal data densities is difficult in these high-dimensional models. This paper gives methods to overcome these difficulties, and explains why existing methods are unreliable. It makes suggestions for maximizing posterior density and initiating MCMC simulations that provide robustness against the complex likelihood shape.  相似文献   

18.
In many applications involving time-varying parameter VARs, it is desirable to restrict the VAR coefficients at each point in time to be non-explosive. This is an example of a problem where inequality restrictions are imposed on states in a state space model. In this paper, we describe how existing MCMC algorithms for imposing such inequality restrictions can work poorly (or not at all) and suggest alternative algorithms which exhibit better performance. Furthermore, we show that previous algorithms involve an approximation relating to a key prior integrating constant. Our algorithms are exact, not involving this approximation. In an application involving a commonly used U.S. data set, we present evidence that the algorithms proposed in this paper work well.  相似文献   

19.
Before the development of the true dome, many ancient cultures used the technique of corbelling to roof spaces. Recently, a series of related statistical models have been proposed in the literature for explaining how corbelled domes might have been constructed. The most sophisticated of these models is based on a piecewise linear structure, with an unknown number of changepoints, to guide the building process. This model is analyzed by the reversible jump Markov Chain Monte Carlo (MCMC) technique. All models considered to date have been two-dimensional, that is, they have taken a single cross section through the dome; even when more extensive data, in the form of measurements on multiple slices through the dome, have been available, these have been averaged together for the purposes of analysis. In this paper, we extend the two-dimensional analysis to a three-dimensional analysis, that takes full advantage of the data collected by the archaeologists and of the rotational symmetries inherent in the structure.We also explore ways of graphically presenting the results from a complex, reversible jump MCMC implementation, in order to check convergence, good mixing, and appropriate exploration of the (high dimensional and varying dimension) parameter space. The model and the graphical techniques are demonstrated on the Treasury of Atreus in Mycenae, Greece, one of the finest extant examples of the corbelling method.  相似文献   

20.
This paper presents a Bayesian analysis of an ordered probit model with endogenous selection. The model can be applied when analyzing ordered outcomes that depend on endogenous covariates that are discrete choice indicators modeled by a multinomial probit model. The model is illustrated by analyzing the effects of different types of medical insurance plans on the level of hospital utilization, allowing for potential endogeneity of insurance status. The estimation is performed using the Markov chain Monte Carlo (MCMC) methods to approximate the posterior distribution of the parameters in the model.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号