共查询到20条相似文献,搜索用时 15 毫秒
1.
Tobias Rydén 《Metrika》1998,47(1):119-145
For a recursive maximum-likelihood estimator with step lengths decaying as 1/n, an adaptive matrix needs to be incorporated to obtain asymptotic efficiency. Ideally, this matrix should be chosen as the inverse Fisher information matrix, which is usually very difficult to compute for incomplete data models. In this paper we give conditions under which the observed information can be incorporated into the recursive procedure to yield an efficient estimator, and we also investigate the finite sample properties of these estimators by simulation. 相似文献
2.
3.
Longitudinal data sets with the structure T (time points) × N (subjects) are often incomplete because of data missing for certain subjects at certain time points. The EM algorithm is applied in conjunction with the Kalman smoother for computing maximum likelihood estimates of longitudinal LISREL models from varying missing data patterns. The iterative procedure uses the LISREL program in the M-step and the Kalman smoother in the E-step. The application of the method is illustrated by simulating missing data on a data set from educational research. 相似文献
4.
We consider pseudo-panel data models constructed from repeated cross sections in which the number of individuals per group is large relative to the number of groups and time periods. First, we show that, when time-invariant group fixed effects are neglected, the OLS estimator does not converge in probability to a constant but rather to a random variable. Second, we show that, while the fixed-effects (FE) estimator is consistent, the usual t statistic is not asymptotically normally distributed, and we propose a new robust t statistic whose asymptotic distribution is standard normal. Third, we propose efficient GMM estimators using the orthogonality conditions implied by grouping and we provide t tests that are valid even in the presence of time-invariant group effects. Our Monte Carlo results show that the proposed GMM estimator is more precise than the FE estimator and that our new t test has good size and is powerful. 相似文献
5.
Let r(x,z) be a function that, along with its derivatives, can be consistently estimated nonparametrically. This paper discusses the identification and consistent estimation of the unknown functions H, M, G and F, where r(x,z)=H[M(x,z)], M(x,z)=G(x)+F(z), and H is strictly monotonic. An estimation algorithm is proposed for each of the model’s unknown components when r(x,z) represents a conditional mean function. The resulting estimators use marginal integration to separate the components G and F. Our estimators are shown to have a limiting Normal distribution with a faster rate of convergence than unrestricted nonparametric alternatives. Their small sample performance is studied in a Monte Carlo experiment. We apply our results to estimate generalized homothetic production functions for four industries in the Chinese economy. 相似文献
6.
This paper investigates the properties of the well-known maximum likelihood estimator in the presence of stochastic volatility and market microstructure noise, by extending the classic asymptotic results of quasi-maximum likelihood estimation. When trying to estimate the integrated volatility and the variance of noise, this parametric approach remains consistent, efficient and robust as a quasi-estimator under misspecified assumptions. Moreover, it shares the model-free feature with nonparametric alternatives, for instance realized kernels, while being advantageous over them in terms of finite sample performance. In light of quadratic representation, this estimator behaves like an iterative exponential realized kernel asymptotically. Comparisons with a variety of implementations of the Tukey–Hanning2 kernel are provided using Monte Carlo simulations, and an empirical study with the Euro/US Dollar future illustrates its application in practice. 相似文献
7.
This paper extends the semiparametric efficient treatment of panel data models pursued by Park and Simar [Park, B.U., Simar, L., 1994. Efficient semiparametric estimation in stochastic frontier models. Journal of the American Statistical Association 89, 929–936] and Park et al. [Park, B.U., Sickles, R.C., Simar, L., 1998. Stochastic frontiers: a semiparametric approach. Journal of Econometrics 84, 273–301; Park, B.U., Sickles, R.C., Simar, L., 2003. Semiparametric efficient estimation of AR(1) panel data models. Journal of Econometrics 117, 279–309] to a dynamic panel setting. We develop a semiparametric efficient estimator under minimal assumptions when the panel model contains a lagged dependent variable. We apply this new estimator to analyze the structure of demand between city pairs for selected U.S. airlines during the period 1979 I–1992 IV. 相似文献
8.
In this paper we consider the problem of estimating semiparametric panel data models with cross section dependence, where the individual-specific regressors enter the model nonparametrically whereas the common factors enter the model linearly. We consider both heterogeneous and homogeneous regression relationships when both the time and cross-section dimensions are large. We propose sieve estimators for the nonparametric regression functions by extending Pesaran’s (2006) common correlated effect (CCE) estimator to our semiparametric framework. Asymptotic normal distributions for the proposed estimators are derived and asymptotic variance estimators are provided. Monte Carlo simulations indicate that our estimators perform well in finite samples. 相似文献
9.
We propose two new jump-robust estimators of integrated variance that allow for an asymptotic limit theory in the presence of jumps. Specifically, our MedRV estimator has better efficiency properties than the tripower variation measure and displays better finite-sample robustness to jumps and small (“zero”) returns. We stress the benefits of local volatility measures using short return blocks, as this greatly alleviates the downward biases stemming from rapid fluctuations in volatility, including diurnal (intraday) U-shape patterns. An empirical investigation of the Dow Jones 30 stocks and extensive simulations corroborate the robustness and efficiency properties of our nearest neighbor truncation estimators. 相似文献
10.
We present a new specification for the multinomial multiperiod probit model with autocorrelated errors. In sharp contrast with commonly used specifications, ours is invariant with respect to the choice of a baseline alternative for utility differencing. It also nests these standard models as special cases, allowing for data-based selection of the baseline alternatives for the latter. Likelihood evaluation is achieved under an Efficient Importance Sampling (EIS) version of the standard GHK algorithm. Several simulation experiments highlight identification, estimation and pretesting within the new class of multinomial multiperiod probit models. 相似文献
11.
This paper develops new results for identification and estimation of Gaussian affine term structure models. We establish that three popular canonical representations are unidentified, and demonstrate how unidentified regions can complicate numerical optimization. A separate contribution of the paper is the proposal of minimum-chi-square estimation as an alternative to MLE. We show that, although it is asymptotically equivalent to MLE, it can be much easier to compute. In some cases, MCSE allows researchers to recognize with certainty whether a given estimate represents a global maximum of the likelihood function and makes feasible the computation of small-sample standard errors. 相似文献
12.
We model a regression density flexibly so that at each value of the covariates the density is a mixture of normals with the means, variances and mixture probabilities of the components changing smoothly as a function of the covariates. The model extends the existing models in two important ways. First, the components are allowed to be heteroscedastic regressions as the standard model with homoscedastic regressions can give a poor fit to heteroscedastic data, especially when the number of covariates is large. Furthermore, we typically need fewer components, which makes it easier to interpret the model and speeds up the computation. The second main extension is to introduce a novel variable selection prior into all the components of the model. The variable selection prior acts as a self-adjusting mechanism that prevents overfitting and makes it feasible to fit flexible high-dimensional surfaces. We use Bayesian inference and Markov Chain Monte Carlo methods to estimate the model. Simulated and real examples are used to show that the full generality of our model is required to fit a large class of densities, but also that special cases of the general model are interesting models for economic data. 相似文献
13.
Identification and estimation of econometric models with group interactions,contextual factors and fixed effects 总被引:1,自引:0,他引:1
This paper considers identification and estimation of structural interaction effects in a social interaction model. The model allows unobservables in the group structure, which may be correlated with included regressors. We show that both the endogenous and exogenous interaction effects can be identified if there are sufficient variations in group sizes. We consider the estimation of the model by the conditional maximum likelihood and instrumental variables methods. For the case with large group sizes, the possible identification can be weak in the sense that the estimates converge in distribution at low rates. 相似文献
14.
We provide a set of conditions sufficient for consistency of a general class of fixed effects instrumental variables (FE-IV) estimators in the context of a correlated random coefficient panel data model, where one ignores the presence of individual-specific slopes. We discuss cases where the assumptions are met and violated. Monte Carlo simulations verify that the FE-IV estimator of the population averaged effect performs notably better than other standard estimators, provided a full set of period dummies is included. We also propose a simple test of selection bias in unbalanced panels when we suspect the slopes may vary by individual. 相似文献
15.
We show how the dynamic logit model for binary panel data may be approximated by a quadratic exponential model. Under the approximating model, simple sufficient statistics exist for the subject-specific parameters introduced to capture the unobserved heterogeneity between subjects. The latter must be distinguished from the state dependence which is accounted for by including the lagged response variable among the regressors. By conditioning on the sufficient statistics, we derive a pseudo conditional likelihood estimator of the structural parameters of the dynamic logit model, which is simple to compute. Asymptotic properties of this estimator are studied in detail. Simulation results show that the estimator is competitive in terms of efficiency with estimators recently proposed in the econometric literature. 相似文献
16.
We consider nonparametric/semiparametric estimation and testing of econometric models with data dependent smoothing parameters. Most of the existing works on asymptotic distributions of a nonparametric/semiparametric estimator or a test statistic are based on some deterministic smoothing parameters, while in practice it is important to use data-driven methods to select the smoothing parameters. In this paper we give a simple sufficient condition that can be used to establish the first order asymptotic equivalence of a nonparametric estimator or a test statistic with stochastic smoothing parameters to those using deterministic smoothing parameters. We also allow for general weakly dependent data. 相似文献
17.
This paper presents a statistical analysis of time series regression models for longitudinal data with and without lagged dependent variables under a variety of assumptions about the initial conditions of the processes being analyzed. The analysis demonstrates how the asymptotic properties of estimators of longitudinal models are critically dependent on the manner in which samples become large: by expanding the number of observations per person, holding the number of people fixed, or by expanding the number of persons, holding the number of observations per person fixed. The paper demonstrates which parameters can and cannot be identified from data produced by different sampling plans. 相似文献
18.
Contaminated or corrupted data typically require strong assumptions to identify parameters of interest. However, weaker assumptions often identify bounds on these parameters. This paper addresses when covariate data—variables in addition to the one of interest—tighten these bounds. First, we construct the identification region for the distribution of the variable of interest. This region demonstrates that covariate data are useless without knowledge about the distribution of erroneous data conditional on the covariates. Then, we develop bounds both on probabilities and on parameters of this distribution that respect stochastic dominance. 相似文献
19.
Cost function estimation often involves data on a function and a family of its derivatives. Such data can substantially improve convergence rates of nonparametric estimators. We propose series-type estimators which incorporate the various derivative data into a single nonparametric least-squares procedure. Convergence rates are obtained and it is shown that for low-dimensional cases, much of the beneficial impact is realized even if only data on ordinary first-order partials are available. In instances where root-n consistency is attained, smoothing parameters can often be chosen very easily, without resort to cross-validation. Simulations and an illustration of cost function estimation are included. 相似文献