首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
S. Baran 《Metrika》2005,62(1):1-15
In this paper an estimator for the general (nonlinear) regression model with random regressors is studied which is based on the Fourier transform of a certain weight function. Consistency and asymptotic normality of the estimator are established and simulation results are presented to illustrate the theoretical ones.Supported by the Hungarian National Science Foundation OTKA under Grants No. F 032060/2000 and F 046061/2004 and by the Bolyai Grant of the Hungarian Academy of Sciences.Received October 2003  相似文献   

2.
A smoothed least squares estimator for threshold regression models   总被引:1,自引:0,他引:1  
We propose a smoothed least squares estimator of the parameters of a threshold regression model. Our model generalizes that considered in Hansen [2000. Sample splitting and threshold estimation. Econometrica 68, 575–603] to allow the thresholding to depend on a linear index of observed regressors, thus allowing discrete variables to enter. We also do not assume that the threshold effect is vanishingly small. Our estimator is shown to be consistent and asymptotically normal thus facilitating standard inference techniques based on estimated standard errors or standard bootstrap for the slope and threshold parameters.  相似文献   

3.
This paper describes a method for estimating simultaneously the parameter vector of the systematic component and the distribution function of the random component of a censored linear regression model. The estimator is obtained by minimizing the sum of the squares of the differences between the observed values of the dependent variable and the corresponding expected values of this variable according to the estimated parameter vector and distribution function. The resulting least squares parameter estimator incorporates information on the distribution of the random component of the regression model that is available from the estimation sample. Hence, it may often be more efficient than are parameter estimators that do not use such information. The results of numerical experiments with the least squares estimator tend to support this hypothesis.  相似文献   

4.
In this paper, we establish asymptotic normality of a new kernel estimator of the conditional mode function introduced by Ould-Saïd and Tatachak (C R Acad Sci Paris Ser I 344:651–656, 2007) for the left-truncation model when the data exhibit some kind of dependence. It is assumed that the lifetime observations with multivariate covariates form a stationary α-mixing sequence.  相似文献   

5.
Boutahar  Mohamed  Deniau  Claude 《Metrika》1996,43(1):57-67
Here we study the least squares estimates in some regression models. We assume that the evolution of the parameter is linearly explosive (i.e. polynomial), or stable (i.e. sinusoidal). We prove the strong consistency, and establish the rate of convergence.  相似文献   

6.
This note extends the asymptotic expansion of the risk of the double k-class estimator of Ullah and Ullah (1978, 1981) and discusses the k1 and k2 values which minimize it. An error in Vinod (1980) is also corrected.  相似文献   

7.
Stein-Rule estimator for regression problems has been studied by several authors including Sclove (1968) and others listed in Vinod's (1978) survey. Ullah and Ullah (1978) provide the expressions for the mean squared error (MSE) of a double k-class (KK) estimator with parameters k1 and k2. When k2=1 the Stein-Rule estimator becomes a special case of KK and an optimal choice of k1 is known. This paper explores optimal theoretical choice of k1 and k2. We note that negative choices of k2 are permissible, and that thereis a large range of choices for K1 and k2 where the MSE of the Stein-Rule estimator can be reduced for regression problems based on multicollinear data. A simulation experiment is included.  相似文献   

8.
A local maximum likelihood estimator based on Poisson regression is presented as well as its bias, variance and asymptotic distribution. This semiparametric estimator is intended to be an alternative to the Poisson, negative binomial and zero-inflated Poisson regression models that does not depend on regularity conditions and model specification accuracy. Some simulation results are presented. The use of the local maximum likelihood procedure is illustrated on one example from the literature. This procedure is found to perform well. This research was partially supported by Calouste Gulbenkian Foundation and PRODEP III.  相似文献   

9.
10.
We propose a fast resample method for two step nonlinear parametric and semiparametric models, which does not require recomputation of the second stage estimator during each resample iteration. The fast resample method directly exploits the score function representations computed on each bootstrap sample, thereby reducing computational time considerably. This method is used to approximate the limit distribution of parametric and semiparametric estimators, possibly simulation based, that admit an asymptotic linear representation. Monte Carlo experiments demonstrate the desirable performance and vast improvement in the numerical speed of the fast bootstrap method.  相似文献   

11.
Summary The generalized ridge estimator, which considers generalizations of mean square error, is presented, and a mathematical rule of determining the optimalk-value is discussed. The generalized ridge estimator is examined in comparison with the least squares, the pseudoinverse, theJames-Stein-type shrinkage, and the principal component estimators, especially focusing their attention on improved adjustments for regression coefficients. An alternative estimation approach that better integrates a priori information is noted. Finally, combining the generalized ridge and robust regression methods is suggested.  相似文献   

12.
This paper presents efficient semiparametric estimators for endogenously stratified regression with two strata, in the case where the error distribution is unknown and the regressors are independent of the error term. The method is based on the use of a kernel-smoothed likelihood function which provides an explicit solution for the maximization problem for the unknown density function without losing information in the asymptotic limit. We consider both standard stratified sampling and variable probability sampling, and allow for the population shares of the strata to be either unknown or known a priori.  相似文献   

13.
We consider a semiparametric competing risk model given by k independent survival times. The paper offers an asymptotic treatment of tests for the semiparametric null hypothesis of equality of the underlying risks. It turns out that modified rank tests are asymptotically efficient for certain semiparametric submodels, where the baseline hazard is a nuisance parameter. In addition, the asymptotic relative efficiency of the present tests is derived. A comparison of asymptotic power functions can then be used to classify various tests proposed earlier in the literature. For instance a chi-square type test is efficient for proportional hazards. Data driven tests of likelihood ratio type are proposed for cones of alternatives. We will consider certain stochastically increasing alternatives as a special example. The paper shows how the concept of local asymptotic normality of Le Cam works for hazard oriented models.  相似文献   

14.
This paper introduces a new factor structure suitable for modeling large realized covariance matrices with full likelihood‐based estimation. Parametric and nonparametric versions are introduced. Because of the computational advantages of our approach, we can model the factor nonparametrically as a Dirichlet process mixture or as an infinite hidden Markov mixture, which leads to an infinite mixture of inverse‐Wishart distributions. Applications to 10 assets and 60 assets show that the models perform well. By exploiting parallel computing the models can be estimated in a matter of a few minutes.  相似文献   

15.
16.
17.
We provide a convenient econometric framework for the analysis of nonlinear dependence in financial applications. We introduce models with constrained nonparametric dependence, which specify the conditional distribution or the copula in terms of a one-dimensional functional parameter. Our approach is intermediate between standard parametric specifications (which are in general too restrictive) and the fully unrestricted approach (which suffers from the curse of dimensionality). We introduce a nonparametric estimator defined by minimizing a chi-square distance between the constrained densities in the family and an unconstrained kernel estimator of the density. We derive the nonparametric efficiency bound for linear forms and show that the minimum chi-square estimator is nonparametrically efficient for linear forms.  相似文献   

18.
We propose a simple estimator for nonlinear method of moment models with measurement error of the classical type when no additional data, such as validation data or double measurements, are available. We assume that the marginal distributions of the measurement errors are Laplace (double exponential) with zero means and unknown variances and the measurement errors are independent of the latent variables and are independent of each other. Under these assumptions, we derive simple revised moment conditions in terms of the observed variables. They are used to make inference about the model parameters and the variance of the measurement error. The results of this paper show that the distributional assumption on the measurement errors can be used to point identify the parameters of interest. Our estimator is a parametric method of moments estimator that uses the revised moment conditions and hence is simple to compute. Our estimation method is particularly useful in situations where no additional data are available, which is the case in many economic data sets. Simulation study demonstrates good finite sample properties of our proposed estimator. We also examine the performance of the estimator in the case where the error distribution is misspecified.  相似文献   

19.
Multivariate regression models for panel data   总被引:1,自引:0,他引:1  
The paper examines the relationship between heterogeneity bias and strict exogeneity in a distributed lag regression of y on x. The relationship is very strong when x is continuous, weaker when x is discrete, and non-existent as the order of the distributed lag becomes infinite. The individual specific random variables introduce nonlinearity and heteroskedasticity; so the paper provides an appropriate framework for the estimation of multivariate linear predictors. Restrictions are imposed using a minimum distance estimator. It is generally more efficient than the conventional estimators such as quasi-maximum likelihood. There are computationally simple generalizations of two- and three-stage least squares that achieve this efficiency gain. Some of these ideas are illustrated using the sample of Young Men in the National Longitudinal Survey. The paper reports regressions on the leads and lags of variables measuring union coverage, SMSA, and region. The results indicate that the leads and lags could have been generated just by a random intercept. This gives some support for analysis of covariance type estimates; these estimates indicate a substantial heterogeneity bias in the union, SMSA, and region coefficients.  相似文献   

20.
Quantile regression techniques have been widely used in empirical economics. In this paper, we consider the estimation of a generalized quantile regression model when data are subject to fixed or random censoring. Through a discretization technique, we transform the censored regression model into a sequence of binary choice models and further propose an integrated smoothed maximum score estimator by combining individual binary choice models, following the insights of Horowitz (1992) and Manski (1985). Unlike the estimators of Horowitz (1992) and Manski (1985), our estimators converge at the usual parametric rate through an integration process. In the case of fixed censoring, our approach overcomes a major drawback of existing approaches associated with the curse-of-dimensionality problem. Our approach for the fixed censored case can be extended readily to the case with random censoring for which other existing approaches are no longer applicable. Both of our estimators are consistent and asymptotically normal. A simulation study demonstrates that our estimators perform well in finite samples.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号