共查询到20条相似文献,搜索用时 0 毫秒
1.
《International Journal of Forecasting》2020,36(4):1252-1259
Data revisions to national accounts pose a serious challenge to policy decision making. Well-behaved revisions should be unbiased, small, and unpredictable. This article shows that revisions to German national accounts are biased, large, and predictable. Moreover, with use of filtering techniques designed to process data subject to revisions, the real-time forecasting performance of initial releases can be increased by up to 23%. For total real GDP growth, however, the initial release is an optimal forecast. Yet, given the results for disaggregated variables, the averaging out of biases and inefficiencies at the aggregate GDP level appears to be good luck rather than good forecasting. 相似文献
2.
We incorporate external information extracted from the European Central Bank’s Survey of Professional Forecasters into the predictions of a Bayesian VAR using entropic tilting and soft conditioning. The resulting conditional forecasts significantly improve the plain BVAR point and density forecasts. Importantly, we do not restrict the forecasts at a specific quarterly horizon but their possible paths over several horizons jointly since the survey information comes in the form of one- and two-year-ahead expectations. As well as improving the accuracy of the variable that we target, the spillover effects on “other-than-targeted” variables are relevant in size and are statistically significant. We document that the baseline BVAR exhibits an upward bias for GDP growth after the financial crisis, and our results provide evidence that survey forecasts can help mitigate the effects of structural breaks on the forecasting performance of a popular macroeconometric model. 相似文献
3.
《International Journal of Forecasting》2020,36(3):1163-1172
We make use of Google search data in an attempt to predict unemployment, CPI and consumer confidence for the US, UK, Canada, Germany and Japan. Google search queries have previously proven valuable in predicting macroeconomic variables in an in-sample context. However, to the best of our knowledge, the more challenging question of whether such data have out-of-sample predictive value has not yet been answered satisfactorily. We focus on out-of-sample nowcasting, and extend the Bayesian structural time series model using the Hamiltonian sampler for variable selection. We find that the search data retain their value in an out-of-sample predictive context for unemployment, but not for CPI or consumer confidence. It is possible that online search behaviours are a relatively reliable gauge of an individual’s personal situation (employment status), but less reliable when it comes to variables that are unknown to the individual (CPI) or too general to be linked to specific search terms (consumer confidence). 相似文献
4.
《International Journal of Forecasting》2019,35(4):1485-1498
Wind power forecasts with lead times of up to a few hours are essential to the optimal and economical operation of power systems and markets. Vector autoregression (VAR) is a framework that has been shown to be well suited to predicting for several wind farms simultaneously by considering the spatio-temporal dependencies in their time series. Lasso penalisation yields sparse models and can avoid overfitting the large numbers of coefficients in higher dimensional settings. However, estimation in VAR models usually does not account for changes in the spatio-temporal wind power dynamics that are related to factors such as seasons or wind farm setup changes, for example. This paper tackles this problem by proposing a time-adaptive lasso estimator and an efficient coordinate descent algorithm for updating the VAR model parameters recursively online. The approach shows good abilities to track changes in the multivariate time series dynamics on simulated data. Furthermore, in two case studies it shows clearly better predictive performances than the non-adaptive lasso VAR and univariate autoregression. 相似文献
5.
Ana Corberán-ValletJosé D. Bermúdez Enriqueta Vercher 《International Journal of Forecasting》2011,27(2):252
This paper presents the Bayesian analysis of a general multivariate exponential smoothing model that allows us to forecast time series jointly, subject to correlated random disturbances. The general multivariate model, which can be formulated as a seemingly unrelated regression model, includes the previously studied homogeneous multivariate Holt-Winters’ model as a special case when all of the univariate series share a common structure. MCMC simulation techniques are required in order to approach the non-analytically tractable posterior distribution of the model parameters. The predictive distribution is then estimated using Monte Carlo integration. A Bayesian model selection criterion is introduced into the forecasting scheme for selecting the most adequate multivariate model for describing the behaviour of the time series under study. The forecasting performance of this procedure is tested using some real examples. 相似文献
6.
We construct factor models based on disaggregate survey data for forecasting national aggregate macroeconomic variables. Our methodology applies regional and sectoral factor models to Norges Bank’s regional survey and to the Swedish Business Tendency Survey. The analysis identifies which of the pieces of information extracted from the individual regions in Norges Bank’s survey and the sectors for the two surveys perform particularly well at forecasting different variables at various horizons. The results show that several factor models beat an autoregressive benchmark in forecasting inflation and the unemployment rate. However, the factor models are most successful at forecasting GDP growth. Forecast combinations using the past performances of regional and sectoral factor models yield the most accurate forecasts in the majority of the cases. 相似文献
7.
《International Journal of Forecasting》2019,35(1):67-79
We examine the conditions under which each individual series that is generated by a vector autoregressive model can be represented as an autoregressive model that is augmented with the lags of a few linear combinations of all the variables in the system. We call this multivariate index-augmented autoregression (MIAAR) modelling. We show that the parameters of the MIAAR can be estimated by a switching algorithm that increases the Gaussian likelihood at each iteration. Since maximum likelihood estimation may perform poorly when the number of parameters increases, we propose a regularized version of our algorithm for handling a medium–large number of time series. We illustrate the usefulness of the MIAAR modelling by both empirical applications and simulations. 相似文献
8.
This paper uses three classes of univariate time series techniques (ARIMA type models, switching regression models, and state-space/structural time series models) to forecast, on an ex post basis, the downturn in U.S. housing prices starting around 2006. The performance of the techniques is compared within each class and across classes by out-of-sample forecasts for a number of different forecast points prior to and during the downturn. Most forecasting models are able to predict a downturn in future home prices by mid 2006. Some state-space models can predict an impending downturn as early as June 2005. State-space/structural time series models tend to produce the most accurate forecasts, although they are not necessarily the models with the best in-sample fit. 相似文献
9.
《International Journal of Forecasting》2020,36(3):851-872
This paper estimates a three-frequency dynamic factor model for nowcasting the Canadian provincial gross domestic product (GDP). The Canadian provincial GDP at market prices is released by Statistics Canada annually with a significant lag (11 months). This necessitates a mixed-frequency approach that can process timely monthly data, the quarterly national accounts, and the annual target variable. The model is estimated on a wide set of provincial, national and international data. In a pseudo real-time exercise, we find that the model outperforms simple benchmarks and is competitive with more sophisticated mixed-frequency approaches (MIDAS models). We also find that variables from the Labour Force Survey are important predictors of real activity. This paper expands previous work that has documented the importance of foreign variables for nowcasting Canadian GDP. This paper finds that including national and foreign predictors is useful for Ontario, while worsening the nowcast performance for smaller provinces. 相似文献
10.
Differencing is a very popular stationary transformation for series with stochastic trends. Moreover, when the differenced series is heteroscedastic, authors commonly model it using an ARMA-GARCH model. The corresponding ARIMA-GARCH model is then used to forecast future values of the original series. However, the heteroscedasticity observed in the stationary transformation should be generated by the transitory and/or the long-run component of the original data. In the former case, the shocks to the variance are transitory and the prediction intervals should converge to homoscedastic intervals with the prediction horizon. We show that, in this case, the prediction intervals constructed from the ARIMA-GARCH models could be inadequate because they never converge to homoscedastic intervals. All of the results are illustrated using simulated and real time series with stochastic levels. 相似文献
11.
《International Journal of Forecasting》2014,30(2):375-381
We sum up the methodology of the team tololo for the Global Energy Forecasting Competition 2012: Load Forecasting. Our strategy consisted of a temporal multi-scale model that combines three components. The first component was a long term trend estimated by means of non-parametric smoothing. The second was a medium term component describing the sensitivity of the electricity demand to the temperature at each time step. We use a generalized additive model to fit this component, using calendar information as well. Finally, a short term component models local behaviours. As the factors that drive this component are unknown, we use a random forest model to estimate it. 相似文献
12.
We develop models for examining possible predictors of growth of China's foreign exchange reserves that embrace Chinese and global trade, financial and risk (uncertainty) factors. Specifically, by comparing with other alternative models, we show that the dynamic model averaging (DMA) and dynamic model selection (DMS) models outperform not only linear models (such as random walk, recursive OLS-AR(1) models, recursive OLS with all predictive variables models) but also the Bayesian model averaging (BMA) model for examining possible predictors of growth of those reserves. The DMS is the best overall across all forecast horizons. While some predictors matter more than others over the forecast horizons, there are few that stand the test of time. The US–China interest rate differential has a superior predictive power among the 13 predictors considered, followed by the nominal effective exchange rate and the interest rate spread for most of the forecast horizons. The relative predictive prowess of the oil and copper prices alternates, depending on the commodity cycles. Policy implications are also provided. 相似文献
13.
《International Journal of Forecasting》2023,39(1):266-278
Policymakers, firms, and investors closely monitor traditional survey-based consumer confidence indicators and treat them as an important piece of economic information. To obtain a daily nowcast of monthly consumer confidence, we introduce a latent factor model for the vector of monthly survey-based consumer confidence and daily sentiment embedded in economic media news articles. The proposed mixed-frequency dynamic factor model uses a Toeplitz correlation matrix to account for the serial correlation in the high-frequency sentiment measurement errors. We find significant accuracy gains in nowcasting survey-based Belgian consumer confidence with economic media news sentiment. 相似文献
14.
The use of a small number of underlying factors to summarize the information from a much larger set of information variables is one of the new frontiers in forecasting. In prior work, the estimated factors have not usually had a structural interpretation and the factors have not been chosen on a theoretical basis. In this paper we propose several variants of a general structural factor forecasting model, and use these to forecast certain key macroeconomic variables. We make the choice of factors more structurally meaningful by estimating factors from subsets of information variables, where these variables can be assigned to subsets on the basis of economic theory. We compare the forecasting performance of the structural factor forecasting model with that of a univariate AR model, a standard VAR model, and some non-structural factor forecasting models. The results suggest that our structural factor forecasting model performs significantly better in forecasting real activity variables, especially at short horizons. 相似文献
15.
This paper applies a large data set, consisting of 167 monthly time series for the UK, both economic and financial, to simulate out-of-sample predictions of industrial production, inflation, 3-month Treasury Bills, and other variables. Fifteen dynamic factor models that allow forecasting based on large panels of time series are considered. The performances of these factor models are then compared to the following competing models: a simple univariate autoregressive, a vector autoregressive, a leading indicator, and a Phillips curve models. The results show that the best dynamic factor models outperform the competing models in forecasting at 6-, 12-, and 24-month horizons. Thus, the financial markets may have predictive power for the economic activity. This can be a useful tool for central banks and financial institutions, which may use the factor models to construct leading indicators of the economic conditions. In addition, researchers can see a strategic application of factor models. 相似文献
16.
《International Journal of Forecasting》2022,38(1):367-383
Sparse and short news headlines can be arbitrary, noisy, and ambiguous, making it difficult for classic topic model LDA (latent Dirichlet allocation) designed for accommodating long text to discover knowledge from them. Nonetheless, some of the existing research about text-based crude oil forecasting employs LDA to explore topics from news headlines, resulting in a mismatch between the short text and the topic model and further affecting the forecasting performance. Exploiting advanced and appropriate methods to construct high-quality features from news headlines becomes crucial in crude oil forecasting. This paper introduces two novel indicators of topic and sentiment for the short and sparse text data to tackle this issue. Empirical experiments show that AdaBoost.RT with our proposed text indicators, with a more comprehensive view and characterization of the short and sparse text data, outperforms the other benchmarks. Another significant merit is that our method also yields good forecasting performance when applied to other futures commodities. 相似文献
17.
Haiyan SongAuthor Vitae Gang LiAuthor VitaeStephen F. WittAuthor Vitae George AthanasopoulosAuthor Vitae 《International Journal of Forecasting》2011,27(3):855
Empirical evidence has shown that seasonal patterns of tourism demand and the effects of various influencing factors on this demand tend to change over time. To forecast future tourism demand accurately requires appropriate modelling of these changes. Based on the structural time series model (STSM) and the time-varying parameter (TVP) regression approach, this study develops the causal STSM further by introducing TVP estimation of the explanatory variable coefficients, and therefore combines the merits of the STSM and TVP models. This new model, the TVP-STSM, is employed for modelling and forecasting quarterly tourist arrivals to Hong Kong from four key source markets: China, South Korea, the UK and the USA. The empirical results show that the TVP-STSM outperforms all seven competitors, including the basic and causal STSMs and the TVP model for one- to four-quarter-ahead ex post forecasts and one-quarter-ahead ex ante forecasts. 相似文献
18.
《International Journal of Forecasting》2020,36(2):267-291
In this paper we consider estimating an approximate factor model in which candidate predictors are subject to sharp spikes such as outliers or jumps. Given that these sharp spikes are assumed to be rare, we formulate the estimation problem as a penalized least squares problem by imposing a norm penalty function on those sharp spikes. Such a formulation allows us to disentangle the sharp spikes from the common factors and estimate them simultaneously. Numerical values of the estimates can be obtained by solving a principal component analysis (PCA) problem and a one-dimensional shrinkage estimation problem iteratively. In addition, it is easy to incorporate methods for selecting the number of common factors in the iterations. We compare our method with PCA by conducting simulation experiments in order to examine their finite-sample performances. We also apply our method to the prediction of important macroeconomic indicators in the U.S., and find that it can deliver performances that are comparable to those of the PCA method. 相似文献
19.
《International Journal of Forecasting》2022,38(1):165-177
Factor modeling is a powerful statistical technique that permits common dynamics to be captured in a large panel of data with a few latent variables, or factors, thus alleviating the curse of dimensionality. Despite its popularity and widespread use for various applications ranging from genomics to finance, this methodology has predominantly remained linear. This study estimates factors nonlinearly through the kernel method, which allows for flexible nonlinearities while still avoiding the curse of dimensionality. We focus on factor-augmented forecasting of a single time series in a high-dimensional setting, known as diffusion index forecasting in macroeconomics literature. Our main contribution is twofold. First, we show that the proposed estimator is consistent and it nests the linear principal component analysis estimator as well as some nonlinear estimators introduced in the literature as specific examples. Second, our empirical application to a classical macroeconomic dataset demonstrates that this approach can offer substantial advantages over mainstream methods. 相似文献
20.
Multivariate GARCH (MGARCH) models need to be restricted so that their estimation is feasible in large systems and so that the covariance stationarity and positive definiteness of conditional covariance matrices are guaranteed. This paper analyzes the limitations of some of the popular restricted parametric MGARCH models that are often used to represent the dynamics observed in real systems of financial returns. These limitations are illustrated using simulated data generated by general VECH models of different dimensions in which volatilities and correlations are interrelated. We show that the restrictions imposed by the BEKK model are very unrealistic, generating potentially misleading forecasts of conditional correlations. On the other hand, models based on the DCC specification provide appropriate forecasts. Alternative estimators of the parameters are important in order to simplify the computations, and do not have implications for the estimates of conditional correlations. The implications of the restrictions imposed by the different specifications of MGARCH models considered are illustrated by forecasting the volatilities and correlations of a five-dimensional system of exchange rate returns. 相似文献