首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到9条相似文献,搜索用时 0 毫秒
1.
Accurate solar forecasts are necessary to improve the integration of solar renewables into the energy grid. In recent years, numerous methods have been developed for predicting the solar irradiance or the output of solar renewables. By definition, a forecast is uncertain. Thus, the models developed predict the mean and the associated uncertainty. Comparisons are therefore necessary and useful for assessing the skill and accuracy of these new methods in the field of solar energy.The aim of this paper is to present a comparison of various models that provide probabilistic forecasts of the solar irradiance within a very strict framework. Indeed, we consider focusing on intraday forecasts, with lead times ranging from 1 to 6 h. The models selected use only endogenous inputs for generating the forecasts. In other words, the only inputs of the models are the past solar irradiance data. In this context, the most common way of generating the forecasts is to combine point forecasting methods with probabilistic approaches in order to provide prediction intervals for the solar irradiance forecasts. For this task, we selected from the literature three point forecasting models (recursive autoregressive and moving average (ARMA), coupled autoregressive and dynamical system (CARDS), and neural network (NN)), and seven methods for assessing the distribution of their error (linear model in quantile regression (LMQR), weighted quantile regression (WQR), quantile regression neural network (QRNN), recursive generalized autoregressive conditional heteroskedasticity (GARCHrls), sieve bootstrap (SB), quantile regression forest (QRF), and gradient boosting decision trees (GBDT)), leading to a comparison of 20 combinations of models.None of the model combinations clearly outperform the others; nevertheless, some trends emerge from the comparison. First, the use of the clear sky index ensures the accuracy of the forecasts. This derived parameter permits time series to be deseasonalized with missing data, and is also a good explanatory variable of the distribution of the forecasting errors. Second, regardless of the point forecasting method used, linear models in quantile regression, weighted quantile regression and gradient boosting decision trees are able to forecast the prediction intervals accurately.  相似文献   

2.
During recent years there has been an increasing awareness of the explanatory power of population age structure variables in economic growth regressions. We estimate a new cross-country regression model of the effects of age structure change on economic growth. We use the new model and recent probabilistic demographic forecasts for India to derive the uncertainty of predicted economic growth rates caused by the uncertainty in demographic developments.  相似文献   

3.
The increasing penetration of intermittent renewable energy in power systems brings operational challenges. One way of supporting them is by enhancing the predictability of renewables through accurate forecasting. Convolutional Neural Networks (Convnets) provide a successful technique for processing space-structured multi-dimensional data. In our work, we propose the U-Convolutional model to predict hourly wind speeds for a single location using spatio-temporal data with multiple explanatory variables as an input. The U-Convolutional model is composed of a U-Net part, which synthesizes input information, and a Convnet part, which maps the synthesized data into a single-site wind prediction. We compare our approach with advanced Convnets, a fully connected neural network, and univariate models. We use time series from the Climate Forecast System Reanalysis as datasets and select temperature and u- and v-components of wind as explanatory variables. The proposed models are evaluated at multiple locations (totaling 181 target series) and multiple forecasting horizons. The results indicate that our proposal is promising for spatio-temporal wind speed prediction, with results that show competitive performance on both time horizons for all datasets.  相似文献   

4.
We review the results of six forecasting competitions based on the online data science platform Kaggle, which have been largely overlooked by the forecasting community. In contrast to the M competitions, the competitions reviewed in this study feature daily and weekly time series with exogenous variables, business hierarchy information, or both. Furthermore, the Kaggle data sets all exhibit higher entropy than the M3 and M4 competitions, and they are intermittent.In this review, we confirm the conclusion of the M4 competition that ensemble models using cross-learning tend to outperform local time series models and that gradient boosted decision trees and neural networks are strong forecast methods. Moreover, we present insights regarding the use of external information and validation strategies, and discuss the impacts of data characteristics on the choice of statistics or machine learning methods. Based on these insights, we construct nine ex-ante hypotheses for the outcome of the M5 competition to allow empirical validation of our findings.  相似文献   

5.
Forecast combination is a well-established and well-tested approach for improving the forecasting accuracy. One beneficial strategy is to use constituent forecasts that have diverse information. In this paper we consider the idea of diversity being accomplished by using different time aggregations. For example, we could create a yearly time series from a monthly time series and produce forecasts for both, then combine the forecasts. These forecasts would each be tracking the dynamics of different time scales, and would therefore add diverse types of information. A comparison of several forecast combination methods, performed in the context of this setup, shows that this is indeed a beneficial strategy and generally provides a forecasting performance that is better than the performances of the individual forecasts that are combined.As a case study, we consider the problem of forecasting monthly tourism numbers for inbound tourism to Egypt. Specifically, we consider 33 individual source countries, as well as the aggregate. The novel combination strategy also produces a generally improved forecasting accuracy.  相似文献   

6.
A variety of methods and ideas have been tried for electricity price forecasting (EPF) over the last 15 years, with varying degrees of success. This review article aims to explain the complexity of available solutions, their strengths and weaknesses, and the opportunities and threats that the forecasting tools offer or that may be encountered. The paper also looks ahead and speculates on the directions EPF will or should take in the next decade or so. In particular, it postulates the need for objective comparative EPF studies involving (i) the same datasets, (ii) the same robust error evaluation procedures, and (iii) statistical testing of the significance of one model’s outperformance of another.  相似文献   

7.
Computer-based demand forecasting systems have been widely adopted in supply chain companies, but little research has studied how these systems are actually used in the forecasting process. We report the findings of a case study of demand forecasting in a pharmaceutical company over a 15-year period. At the start of the study, managers believed that they were making extensive use of their forecasting system that was marketed based on the accuracy of its advanced statistical methods. Yet most forecasts were obtained using the system’s facility for judgmentally overriding the automatic statistical forecasts. Carrying out the judgmental interventions involved considerable management effort as part of a sales & operations planning (S&OP) process, yet these often only served to reduce forecast accuracy. This study uses observations of the forecasting process, interviews with participants and data on the accuracy of forecasts to investigate why the managers continued to use non-normative forecasting practices for many years despite the potential economic benefits that could be achieved through change. The reasons for the longevity of these practices are examined both from the perspective of the individual forecaster and the organization as a whole.  相似文献   

8.
A new method for forecasting the trend of time series, based on mixture of MLP experts, is presented. In this paper, three neural network combining methods and an Adaptive Network-Based Fuzzy Inference System (ANFIS) are applied to trend forecasting in the Tehran stock exchange. There are two experiments in this study. In experiment I, the time series data are the Kharg petrochemical company’s daily closing prices on the Tehran stock exchange. In this case study, which considers different schemes for forecasting the trend of the time series, the recognition rates are 75.97%, 77.13% and 81.64% for stacked generalization, modified stacked generalization and ANFIS, respectively. Using the mixture of MLP experts (ME) scheme, the recognition rate is strongly increased to 86.35%. A gain and loss analysis is also used, showing the relative forecasting success of the ME method with and without rejection criteria, compared to a simple buy and hold approach. In experiment II, the time series data are the daily closing prices of 37 companies on the Tehran stock exchange. This experiment is conducted to verify the results of experiment I and to show the efficiency of the ME method compared to stacked generalization, modified stacked generalization and ANFIS.  相似文献   

9.
    
Deep neural networks and gradient boosted tree models have swept across the field of machine learning over the past decade, producing across-the-board advances in performance. The ability of these methods to capture feature interactions and nonlinearities makes them exceptionally powerful and, at the same time, prone to overfitting, leakage, and a lack of generalization in domains with target non-stationarity and collinearity, such as time-series forecasting. We offer guidance to address these difficulties and provide a framework that maximizes the chances of predictions that generalize well and deliver state-of-the-art performance. The techniques we offer for cross-validation, augmentation, and parameter tuning have been used to win several major time-series forecasting competitions—including the M5 Forecasting Uncertainty competition and the Kaggle COVID19 Forecasting series—and, with the proper theoretical grounding, constitute the current best practices in time-series forecasting.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号