共查询到20条相似文献,搜索用时 0 毫秒
1.
Bounds on European Option Prices under Stochastic Volatility 总被引:5,自引:0,他引:5
In this paper we consider the range of prices consistent with no arbitrage for European options in a general stochastic volatility model. We give conditions under which the infimum and the supremum of the possible option prices are equal to the intrinsic value of the option and to the current price of the stock, respectively, and show that these conditions are satisfied in most of the stochastic volatility models from the financial literature. We also discuss properties of Black–Scholes hedging strategies in stochastic volatility models where the volatility is bounded. 相似文献
2.
We consider two risk‐averse financial agents who negotiate the price of an illiquid indivisible contingent claim in an incomplete semimartingale market environment. Under the assumption that the agents are exponential utility maximizers with nontraded random endowments, we provide necessary and sufficient conditions for negotiation to be successful, i.e., for the trade to occur. We also study the asymptotic case where the size of the claim is small compared to the random endowments and we give a full characterization in this case. Finally, we study a partial‐equilibrium problem for a bundle of divisible claims and establish existence and uniqueness. A number of technical results on conditional indifference prices is provided. 相似文献
3.
The paper examines equilibrium models based on Epstein–Zin preferences in a framework in which exogenous state variables follow affine jump diffusion processes. A main insight is that the equilibrium asset prices can be computed using a standard machinery of affine asset pricing theory by imposing parametric restrictions on market prices of risk, determined inside the model by preference and model parameters. An appealing characteristic of the general equilibrium setup is that the state variables have an intuitive and testable interpretation as driving the consumption and dividend dynamics. We present a detailed example where large shocks (jumps) in consumption volatility translate into negative jumps in equilibrium prices of the assets as agents demand a higher premium to compensate for higher risks. This endogenous “leverage effect,” which is purely an equilibrium outcome in the economy, leads to significant premiums for out‐of‐the‐money put options. Our model is thus able to produce an equilibrium “volatility smirk,” which realistically mimics that observed for index options. 相似文献
4.
This paper gives an ordering on option prices under various well-known martingale measures in an incomplete stochastic volatility model. Our central result is a comparison theorem that proves convex option prices are decreasing in the market price of volatility risk, the parameter governing the choice of pricing measure. The theorem is applied to order option prices under q -optimal pricing measures. In doing so, we correct orderings demonstrated numerically in Heath, Platen, and Schweizer ( Mathematical Finance , 11(4), 2001) in the special case of the Heston model. 相似文献
5.
Embedding asset pricing in a utility maximization framework leads naturally to the concept of minimax martingale measures. We consider a market model where the price process is assumed to be an d‐semimartingale X and the set of trading strategies consists of all predictable, X‐integrable, d‐valued processes H for which the stochastic integral (H.X) is uniformly bounded from below. When the market is free of arbitrage, we show that a sufficient condition for the existence of the minimax measure is that the utility function u : → is concave and nondecreasing. We also show the equivalence between the no free lunch with vanishing risk condition, the existence of a separating measure, and a properly defined notion of viability. 相似文献
6.
COHERENT ACCEPTABILITY MEASURES IN MULTIPERIOD MODELS 总被引:1,自引:0,他引:1
The framework of coherent risk measures has been introduced by Artzner et al. (1999; Math. Finance 9, 203–228) in a single-period setting. Here, we investigate a similar framework in a multiperiod context. We add an axiom of dynamic consistency to the standard coherence axioms, and obtain a representation theorem in terms of collections of multiperiod probability measures that satisfy a certain product property. This theorem is similar to results obtained by Epstein and Schneider (2003; J. Econ. Theor. 113, 1–31) and Wang (2003; J. Econ. Theor. 108, 286–321) in a different axiomatic framework. We then apply our representation result to the pricing of derivatives in incomplete markets, extending results by Carr, Geman, and Madan (2001; J. Financial Econ. 32, 131–167) to the multiperiod case. We present recursive formulas for the computation of price bounds and corresponding optimal hedges. When no shortselling constraints are present, we obtain a recursive formula for price bounds in terms of martingale measures. 相似文献
7.
Pietro Siorpaes 《Mathematical Finance》2016,26(3):602-616
In this paper we ask whether, given a stock market and an illiquid derivative, there exists arbitrage‐free prices at which a utility‐maximizing agent would always want to buy the derivative, irrespectively of his own initial endowment of derivatives and cash. We prove that this is false for any given investor if one considers all initial endowments with finite utility, and that it can instead be true if one restricts to the endowments in the interior. We show, however, how the endowments on the boundary can give rise to very odd phenomena; for example, an investor with such an endowment would choose not to trade in the derivative even at prices arbitrarily close to some arbitrage price. 相似文献
8.
Uncertainty on the choice of an option pricing model can lead to "model risk" in the valuation of portfolios of options. After discussing some properties which a quantitative measure of model uncertainty should verify in order to be useful and relevant in the context of risk management of derivative instruments, we introduce a quantitative framework for measuring model uncertainty in the context of derivative pricing. Two methods are proposed: the first method is based on a coherent risk measure compatible with market prices of derivatives, while the second method is based on a convex risk measure. Our measures of model risk lead to a premium for model uncertainty which is comparable to other risk measures and compatible with observations of market prices of a set of benchmark derivatives. Finally, we discuss some implications for the management of "model risk." 相似文献
9.
Scott Robertson 《Mathematical Finance》2017,27(3):746-778
Approximations to utility indifference prices are provided for a contingent claim in the large position size limit. Results are valid for general utility functions on the real line and semi‐martingale models. It is shown that as the position size approaches infinity, the utility function's decay rate for large negative wealths is the primary driver of prices. For utilities with exponential decay, one may price like an exponential investor. For utilities with a power decay, one may price like a power investor after a suitable adjustment to the rate at which the position size becomes large. In a sizable class of diffusion models, limiting indifference prices are explicitly computed for an exponential investor. Furthermore, the large claim limit arises endogenously as the hedging error for the claim vanishes. 相似文献
10.
Marco Frittelli 《Mathematical Finance》2000,10(1):39-52
Let χ be a family of stochastic processes on a given filtered probability space (Ω, F, (Ft)t∈T, P) with T?R+. Under the assumption that the set Me of equivalent martingale measures for χ is not empty, we give sufficient conditions for the existence of a unique equivalent martingale measure that minimizes the relative entropy, with respect to P, in the class of martingale measures. We then provide the characterization of the density of the minimal entropy martingale measure, which suggests the equivalence between the maximization of expected exponential utility and the minimization of the relative entropy. 相似文献
11.
Stochastic volatility models of the Ornstein-Uhlenbeck type possess authentic capability of capturing some stylized features of financial time series. In this work we investigate this class of models from the viewpoint of derivative asset analysis. We discuss topics related to the incompleteness of this type of markets. In particular, for structure preserving martingale measures, we derive the price of simple European-style contracts in closed form. Furthermore, the range of viable prices is determined and an empirical application is presented. 相似文献
12.
Option Pricing Under Incompleteness and Stochastic Volatility 总被引:4,自引:0,他引:4
13.
In a financial market model with constraints on the portfolios, define the price for a claim C as the smallest real number p such that supπ E[U(XTx+p, π?C)]≥ supπ E[U(XTx, π)], where U is the negative exponential utility function and Xx, π is the wealth associated with portfolio π and initial value x. We give the relations of this price with minimal entropy or fair price in the flavor of Karatzas and Kou (1996) and superreplication. Using dynamical methods, we characterize the price equation, which is a quadratic Backward SDE, and describe the optimal wealth and portfolio. Further use of Backward SDE techniques allows for easy determination of the pricing function properties. 相似文献
14.
Chenghu Ma 《Mathematical Finance》1998,8(3):249-275
This paper studies the equilibrium characterization of asset pricing in a discrete‐time Lucas exchange economy (Lucas 1978) with the intertemporal recursive utility function of Epstein and Zin (1989). A general formulation of equilibrium asset pricing is presented. It is shown that risk aversion of a certainty equivalent corresponds to risk aversion in the intertemporal asset pricing model. The discrete‐time analogue of Ma's (1993) option pricing formula is derived in an i.i.d. environment, with which we prove an observational nonequivalence theorem in distinguishing the differences of the betweenness recursive utility functions and the expected utility functions. Additionally, when the consumption growth rate follows a first-order Markov process, it is shown that the observational nonequivalence result holds for Kreps–Porteus expected utility. Finally, as by-products, this paper also contains derivations of closed-form formulas for the aggregate equity (with endogenously determined yields), the term structure of interest rates, and European call options on the aggregate equity in a Markov setting. 相似文献
15.
We solve the problem of an investor who maximizes utility but faces random preferences. We propose a problem formulation based on expected certainty equivalents. We tackle the time-consistency issues arising from that formulation by applying the equilibrium theory approach. To this end, we provide the proper definitions and prove a rigorous verification theorem. We complete the calculations for the cases of power and exponential utility. For power utility, we illustrate in a numerical example that the equilibrium stock proportion is independent of wealth, but decreasing in time, which we also supplement by a theoretical discussion. For exponential utility, the usual constant absolute risk aversion is replaced by its expectation. 相似文献
16.
A numéraire is a portfolio that, if prices and dividends are denominated in its units, admits an equivalent martingale measure that transforms all gains processes into martingales. We first supply a necessary and sufficient condition for the generic existence of numéraires in a finite dimensional setting. We then characterize the arbitrage‐free prices and dividends for which the absence of numéraires survives any small perturbation preserving no arbitrage. Finally, we identify the cases when any small, but otherwise arbitrary, perturbation of prices and dividends preserves either the existence of numéraires, or their nonexistence under no arbitrage. 相似文献
17.
The (subjective) indifference value of a payoff in an incomplete financial market is that monetary amount which leaves an agent indifferent between buying or not buying the payoff when she always optimally exploits her trading opportunities. We study these values over time when they are defined with respect to a dynamic monetary concave utility functional, that is, minus a dynamic convex risk measure. For that purpose, we prove some new results about families of conditional convex risk measures. We study the convolution of abstract conditional convex risk measures and show that it preserves the dynamic property of time-consistency. Moreover, we construct a dynamic risk measure (or utility functional) associated to superreplication in a market with trading constraints and prove that it is time-consistent. By combining these results, we deduce that the corresponding indifference valuation functional is again time-consistent. As an auxiliary tool, we establish a variant of the representation theorem for conditional convex risk measures in terms of equivalent probability measures. 相似文献
18.
Daniel Dufresne 《Mathematical Finance》2000,10(4):407-428
This paper has four goals: (a) relate ladder height distributions to option values; (b) show how Laguerre expansions may be used in the computation of densities, distribution functions, and option prices; (c) derive some new results on the integral of geometric Brownian motion over a finite interval; and (d) apply the preceding results to the determination of the distribution of the integral of geometric Brownian motion and the computation of Asian option values. The usual fixed‐strike options on the average are treated, as well as options with payoffs expressed in terms of one over the average of the underlying security, which this author calls “reciprocal Asian options.” In all cases the underlying asset is represented by geometric Brownian motion, the averages are performed continuously, and the options are of European type. 相似文献
19.
Complete Models with Stochastic Volatility 总被引:8,自引:1,他引:8
The paper proposes an original class of models for the continuous-time price process of a financial security with nonconstant volatility. The idea is to define instantaneous volatility in terms of exponentially weighted moments of historic log-price. The instantaneous volatility is therefore driven by the same stochastic factors as the price process, so that, unlike many other models of nonconstant volatility, it is not necessary to introduce additional sources of randomness. Thus the market is complete and there are unique, preference-independent options prices.
We find a partial differential equation for the price of a European call option. Smiles and skews are found in the resulting plots of implied volatility. 相似文献
We find a partial differential equation for the price of a European call option. Smiles and skews are found in the resulting plots of implied volatility. 相似文献
20.
文章依据公司不确定性与投资关系的实物期权理论与代理理论,从公司债务期限结构、投资不可逆性、公司成长性、财务困境和股权激励五个维度,提出风险投资关系及其影响因素的检验命题,并利用中国上市公司数据分析得到结果。研究结果表明,中国民营上市公司存在较强的投资风险规避倾向,但这种关系在存在财务困境和股权激励的公司表现减弱。国有上市公司存在相似的现象但显著性相对不明显。 相似文献