首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
Abstract

If one assumes that the surplus of an insurer follows a jump-diffusion process and the insurer would invest its surplus in a risky asset, whose prices are modeled by a geometric Brownian motion, the resulting surplus for the insurer is called a jump-diffusion surplus process compounded by a geometric Brownian motion. In this resulting surplus process, ruin may be caused by a claim or oscillation. We decompose the ruin probability in the resulting surplus process into the sum of two ruin probabilities: the probability that ruin is caused by a claim, and the probability that ruin is caused by oscillation. Integro-differential equations for these ruin probabilities are derived. When claim sizes are exponentially distributed, asymptotical formulas of the ruin probabilities are derived from the integro-differential equations, and it is shown that all three ruin probabilities are asymptotical power functions with the same orders and that the orders of the power functions are determined by the drift and volatility parameters of the geometric Brownian motion. It is known that the ruin probability for a jump-diffusion surplus process is an asymptotical exponential function when claim sizes are exponentially distributed. The results of this paper further confirm that risky investments for an insurer are dangerous in the sense that either ruin is certain or the ruin probabilities are asymptotical power functions, not asymptotical exponential functions, when claim sizes are exponentially distributed.  相似文献   

2.
Abstract

We extend the work of Browne (1995) and Schmidli (2001), in which they minimize the probability of ruin of an insurer facing a claim process modeled by a Brownian motion with drift. We consider two controls to minimize the probability of ruin: (1) investing in a risky asset and (2) purchasing quota-share reinsurance. We obtain an analytic expression for the minimum probability of ruin and the corresponding optimal controls, and we demonstrate our results with numerical examples.  相似文献   

3.

In this paper we consider a risk process in which claim inter-arrival times have a phase-type(2) distribution, a distribution with a density satisfying a second order linear differential equation. We consider some ruin related problems. In particular, we consider the compound geometric representation of the infinite time survival probability, as well as the (defective) distributions of the surplus immediately prior to ruin and of the deficit at ruin. We also consider explicit solutions for the infinite time ruin probability in the case where the individual claim amount distribution is phase-type.  相似文献   

4.
A certain volume of risks is insured and there is a reinsurance contract, according to which claims and total premium income are shared between a direct insurer and a reinsurer in such a way, that the finite horizon probability of their joint survival is maximized. An explicit expression for the latter probability, under an excess of loss (XL) treaty is derived, using the improved version of the Ignatov and Kaishev's ruin probability formula (see Ignatov, Kaishev & Krachunov. 2001a) and assuming, Poisson claim arrivals, any discrete joint distribution of the claims, and any increasing real premium income function. An explicit expression for the probability of survival of the cedent only, under an XL contract is also derived and used to determine the probability of survival of the reinsurer, given survival of the cedent. The absolute value of the difference between the probability of survival of the cedent and the probability of survival of the reinsurer, given survival of the cedent is used for the choice of optimal retention level. We derive formulae for the expected profit of the cedent and of the reinsurer, given their joint survival up to the finite time horizon. We illustrate how optimal retention levels can be set, using an optimality criterion based on the expected profit formulae. The quota share contract is also considered under the same model. It is shown that the probability of joint survival of the cedent and the reinsurer coincides with the probability of survival of solely the insurer. Extensive, numerical comparisons, illustrating the performance of the proposed reinsurance optimality criteria are presented.  相似文献   

5.
Abstract

The probability of ruin is investigated under the influence of a premium rate which varies with the level of free reserves. Section 4 develops a number of inequalities for the ruin probability, establishing upper and lower bounds for it in Theorem 4. Theorem 5 gives an expression for the ruin probability, and it is seen in Section 5 that this amounts to a generalization of the ruin probability given by Gerber for the special case of a negative exponential claim size distribution. In that same section it is shown the Lundberg's inequality is not derivable from the generalized theory of Section 4, and this is seen as a drawback of the methods used there. Sections 6 and 7 deal with some special cases, including claim size distributions with monotone failure rates. Section 8 shows that, in contrast with the result for a constant premium that the probability of ruin for zero initial reserve is independent of the claim size distribution, the same result does not hold when the premium rate is allowed to vary. Section 9 gives some comments on the possible effect of “dangerousness” of a claim size distribution on ruin probability.  相似文献   

6.
In this paper, we consider the problem of optimal investment by an insurer. The wealth of the insurer is described by a Cramér–Lundberg process. The insurer invests in a market consisting of a bank account and m risky assets. The mean returns and volatilities of the risky assets depend linearly on economic factors that are formulated as the solutions of linear stochastic differential equations. Moreover, the insurer preferences are exponential. With this setting, a Hamilton–Jacobi–Bellman equation that is derived via a dynamic programming approach has an explicit solution found by solving the matrix Riccati equation. Hence, the optimal strategy can be constructed explicitly. Finally, we present some numerical results related to the value function and the ruin probability using the optimal strategy.  相似文献   

7.
Abstract

Consider a discrete-time risk model in which the insurer is allowed to invest a proportion of its wealth in a risky stock and keep the rest in a risk-free bond. Assume that the claim amounts within individual periods follow an autoregressive process with heavy-tailed innovations and that the log-returns of the stock follow another auto regressive process, independent of the former one. We derive an asymptotic formula for the finite-time ruin probability and propose a hybrid method, combining simulation with asymptotics, to compute this ruin probability more efficiently. As an application, we consider a portfolio optimization problem in which we determine the proportion invested in the risky stock that maximizes the expected terminal wealth subject to a constraint on the ruin probability.  相似文献   

8.
Abstract

An explicit solution for the probability of ruin in the presence of an absorbing upper barrier was developed by Segerdahl (1970) for the particular case in which both the interoccurrence times between successive claims and the single claim amounts follow an exponential distribution with unit mean. In this paper we show that his method of solution may be extended to produce explicit solutions for two more general types of single claim amount distribution. These are the gamma distribution, denoted γ(a), where a is an integer, and the mixed exponential distribution. Comparisons are drawn between this approach when the upper barrier tends to infinity, and the classical solution for ruin probability in these particular cases given in Cramér (1955).  相似文献   

9.
Abstract

In his paper “Über einige risikotheoretische Fragestellungen” (SAT 1942: 1–2, p. 43) C.-O. Segerdahl generalizes the theory of ruin probability ψ(u) to the case where interest is continuously added to the risk reserve u at the rate δ′.  相似文献   

10.
Abstract

At retirement, most individuals face a choice between voluntary annuitization and discretionary management of assets with systematic withdrawals for consumption purposes. Annuitization–buying a life annuity from an insurance company–assures a lifelong consumption stream that cannot be outlived, but it is at the expense of a complete loss of liquidity. On the other hand, discretionary management and consumption from assets–self-annuitization–preserves flexibility but with the distinct risk that a constant standard of living will not be maintainable.

In this paper we compute the lifetime and eventual probability of ruin (PoR) for an individual who wishes to consume a fixed periodic amount–a self-constructed annuity–from an initial endowment invested in a portfolio earning a stochastic (lognormal) rate of return. The lifetime PoR is the probability that net wealth will hit zero prior to a stochastic date of death. The eventual PoR is the probability that net wealth will ever hit zero for an infinitely lived individual.

We demonstrate that the probability of ruin can be represented as the probability that the stochastic present value (SPV) of consumption is greater than the initial investable wealth. The lifetime and eventual probabilities of ruin are then obtained by evaluating one minus the cumulative density function of the SPV at the initial wealth level. In that eventual case, we offer a precise analytical solution because the SPV is known to be a reciprocal gamma distribution. For the lifetime case, using the Gompertz law of mortality, we provide two approximations. Both involve “moment matching” techniques that are motivated by results in Arithmetic Asian option pricing theory. We verify the accuracy of these approximations using Monte Carlo simulations. Finally, a numerical case study is provided using Canadian mortality and capital market parameters. It appears that the lifetime probability of ruin–for a consumption rate that is equal to the life annuity payout–is at its lowest with a well-diversified portfolio.  相似文献   

11.
In this paper, the compound Poisson risk model is considered. Inspired by Albrecher, Cheung, & Thonhauser. [(2011b). Randomized observation periods for the compound Poisson risk model: dividend. ASTIN Bulletin 41(2), 645–672], it is assumed that the insurer observes its surplus level periodically to decide on dividend payments at the arrival times of an Erlang(n) renewal process. If the observed surplus is larger than the maximum of a threshold b and the last observed (post-dividend) level, then a fraction of the excess is paid as a lump sum dividend. Ruin is declared when the observed surplus is negative. In this proposed periodic threshold-type dividend strategy, the insurer can have a ruin probability of less than one (as opposed to the periodic barrier strategy). The expected discounted dividends before ruin (denoted by V) will be analyzed. For arbitrary claim distribution, the general solution of V is derived. More explicit result for V is presented when claims have rational Laplace transform. Numerical examples are provided to illustrate the effect of randomized observations on V and the optimization of V with respect to b. When claims are exponential, convergence to the traditional threshold strategy is shown as the inter-observation times tend to zero.  相似文献   

12.
It is shown that the effect of increased probability of loss on the demand for insurance depends on whether both insured and insurer are aware of the change. When both insurer and insured share the same beliefs about the probability of loss (symmetric information), an increase in the loss probability may lead risk-averse agents to demandless insurance.  相似文献   

13.
This article proposes two coefficients, “fear of loss” ( FL ) and “happiness of win” ( HW ), to capture the variation of risk attitude with respect to wealth. Several properties of interpersonal comparisons of FL and HW are achieved. We present three applications in the default risk bargaining problem ( Tibiletti, 2006 ) to demonstrate that these properties can deliver more shortcut bargaining conditions and unambiguous comparative static results in situations involving interpersonal risk exchanges. We show that FL and HW coefficients are instrumental in explaining the comparative diffidence between an insurer and an insured.  相似文献   

14.
We consider a class of Markovian risk models in which the insurer collects premiums at rate c1(c2) whenever the surplus level is below (above) a constant threshold level b. We derive the Laplace-Stieltjes transform (LST) of the distribution of the time to ruin as well as the LST (with respect to time) of the joint distribution of the time to ruin, the surplus prior to ruin, and the deficit at ruin. By interpreting that the insurer pays dividends continuously at rate c1?c2 whenever the surplus level is above b, we also derive the expected discounted value of total dividend payments made prior to ruin. Our results are obtained by making use of an existing connection which links an insurer's surplus process to an embedded fluid flow process.  相似文献   

15.
Abstract

Consider a portfolio containing number of risk classes. Each class has its own demand function, which determines the number of insureds in this class as a function of the premium. The insurer determines the premiums based on the number of insureds in each class. The “market” reacts by updating the number of the policyholders, then the insurer updates the premium, and so on. We show that this process has an equilibrium point, and then we characterize this point.  相似文献   

16.
A discrete-time option-pricing model is used to derive the “fair” rate of return for the property-liability insurance firm. The rationale for the use of this model is that the financial claims of shareholders, policyholders, and tax authorities can be modeled as European options written on the income generated by the insurer's asset portfolio. This portfolio consists mostly of traded financial assets and is therefore relatively easy to value. By setting the value of the shareholders' option equal to the initial surplus, an implicit solution for the fair insurance price may be derived. Unlike previous insurance regulatory models, this approach addresses the ruin probability of the insurer, as well as nonlinear tax effects.  相似文献   

17.
ABSTRACT

This paper considers a Cramér–Lundberg risk setting, where the components of the underlying model change over time. We allow the more general setting of the cumulative claim process being modeled as a spectrally positive Lévy process. We provide an intuitively appealing mechanism to create such parameter uncertainty: at Poisson epochs, we resample the model components from a finite number of d settings. It results in a setup that is particularly suited to describe situations in which the risk reserve dynamics are affected by external processes. We extend the classical Cramér–Lundberg approximation (asymptotically characterizing the all-time ruin probability in a light-tailed setting) to this more general setup. In addition, for the situation that the driving Lévy processes are sums of Brownian motions and compound Poisson processes, we find an explicit uniform bound on the ruin probability. In passing we propose an importance-sampling algorithm facilitating efficient estimation, and prove it has bounded relative error. In a series of numerical experiments we assess the accuracy of the asymptotics and bounds, and illustrate that neglecting the resampling can lead to substantial underestimation of the risk.  相似文献   

18.
Abstract

A Markov-modulated risk process perturbed by diffusion is considered in this paper. In the model the frequencies and distributions of the claims and the variances of the Wiener process are influenced by an external Markovian environment process with a finite number of states. This model is motivated by the flexibility in modeling the claim arrival process, allowing that periods with very frequent arrivals and ones with very few arrivals may alternate. Given the initial surplus and the initial environment state, systems of integro-differential equations for the expected discounted penalty functions at ruin caused by a claim and oscillation are established, respectively; a generalized Lundberg’s equation is also obtained. In the two-state model, the expected discounted penalty functions at ruin due to a claim and oscillation are derived when both claim amount distributions are from the rational family. As an illustration, the explicit results are obtained for the ruin probability when claim sizes are exponentially distributed. A numerical example also is given for the case that two classes of claims are Erlang(2) distributed and of a mixture of two exponentials.  相似文献   

19.
Abstract

This paper presents an “operational calculus” method for evaluating the convolution of uniform distributions and applies it to solve a problem in ruin theory.  相似文献   

20.
Insurance purchasers obtain varied discounts for insurance. This paper examines what drives these differences, specifically whether the loss probability and the wealth of the insured affect the size of the premium discount in automobile insurance. To describe a bargain between a client and an insurer over premiums and coverage, we first develop a sequential insurance bargaining game where the client has an outside option to bargain with another insurer. We find that the equilibrium involves full coverage and, based on the results of comparative statics, we propose hypotheses regarding the effects of the loss probability and the wealth of the insured on the size of the premium discount. We then use a unique data set of 85,806 observations of Taiwanese automobile liability insurance for property damage to empirically test the predictions. After controlling for underwriting and macroeconomic variables, we find that both (1) the insured with a lower claim probability (as a proxy for the insured with a lower loss probability) and (2) the insured with a higher salvage value car (as a proxy for the wealthier insured) receive a greater premium discount. These results support our theoretical results.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号