共查询到6条相似文献,搜索用时 0 毫秒
1.
In this article, we consider an extension to the renewal or Sparre Andersen risk process by introducing a dependence structure between the claim sizes and the interclaim times through a Farlie–Gumbel–Morgenstern copula proposed by Cossette et al. (2010) for the classical compound Poisson risk model. We consider that the inter-arrival times follow the Erlang(n) distribution. By studying the roots of the generalised Lundberg equation, the Laplace transform (LT) of the expected discounted penalty function is derived and a detailed analysis of the Gerber–Shiu function is given when the initial surplus is zero. It is proved that this function satisfies a defective renewal equation and its solution is given through the compound geometric tail representation of the LT of the time to ruin. Explicit expressions for the discounted joint and marginal distribution functions of the surplus prior to the time of ruin and the deficit at the time of ruin are derived. Finally, for exponential claim sizes explicit expressions and numerical examples for the ruin probability and the LT of the time to ruin are given. 相似文献
2.
Hansjörg Albrecher Eric C.K. Cheung Stefan Thonhauser 《Scandinavian actuarial journal》2013,2013(6):424-452
In the framework of collective risk theory, we consider a compound Poisson risk model for the surplus process where the process (and hence ruin) can only be observed at random observation times. For Erlang(n) distributed inter-observation times, explicit expressions for the discounted penalty function at ruin are derived. The resulting model contains both the usual continuous-time and the discrete-time risk model as limiting cases, and can be used as an effective approximation scheme for the latter. Numerical examples are given that illustrate the effect of random observation times on various ruin-related quantities. 相似文献
3.
Mathieu Boudreault Hélène Cossette David Landriault Etienne Marceau 《Scandinavian actuarial journal》2013,2013(5):265-285
We consider an extension to the classical compound Poisson risk model for which the increments of the aggregate claim amount process are independent. In Albrecher and Teugels (2006), an arbitrary dependence structure among the interclaim time and the subsequent claim size expressed through a copula is considered and they derived asymptotic results for both the finite and infinite-time ruin probabilities. In this paper, we consider a particular dependence structure among the interclaim time and the subsequent claim size and we derive the defective renewal equation satisfied by the expected discounted penalty function. Based on the compound geometric tail representation of the Laplace transform of the time to ruin, we also obtain an explicit expression for this Laplace transform for a large class of claim size distributions. The ruin probability being a special case of the Laplace transform of the time to ruin, explicit expressions are therefore obtained for this particular ruin related quantity. Finally, we measure the impact of the various dependence structures in the risk model on the ruin probability via the comparison of their Lundberg coefficients. 相似文献
4.
The idea of taxation in risk process was first introduced by Albrecher, H. & Hipp, C. Lundberg’s risk process with tax. Blätter der DGVFM 28(1), 13–28, who suggested that a certain proportion of the insurer’s income is paid immediately as tax whenever the surplus process is at its running maximum. In this paper, a spectrally negative Lévy insurance risk model under taxation is studied. Motivated by the concept of randomized observations proposed by Albrecher, H., Cheung, E.C.K. & Thonhauser, S. Randomized observation periods for the compound Poisson risk model: Dividends. ASTIN Bulletin 41(2), 645–672, we assume that the insurer’s surplus level is only observed at a sequence of Poisson arrival times, at which the event of ruin is checked and tax may be collected from the tax authority. In particular, if the observed (pre-tax) level exceeds the maximum of the previously observed (post-tax) values, then a fraction of the excess will be paid as tax. Analytic expressions for the Gerber–Shiu expected discounted penalty function and the expected discounted tax payments until ruin are derived. The Cramér-Lundberg asymptotic formula is shown to hold true for the Gerber–Shiu function, and it differs from the case without tax by a multiplicative constant. Delayed start of tax payments will be discussed as well. We also take a look at the case where solvency is monitored continuously (while tax is still paid at Poissonian time points), as many of the above results can be derived in a similar manner. Some numerical examples will be given at the end. 相似文献
5.
So-Yeun Kim 《Scandinavian actuarial journal》2013,2013(2):118-137
The main focus of this paper is to extend the analysis of ruin-related quantities to the delayed renewal risk models. First, the background for the delayed renewal risk model is introduced and a general equation that is used as a framework is derived. The equation is obtained by conditioning on the first drop below the initial surplus level. Then, we consider the deficit at ruin among many random variables associated with ruin. The properties of the distribution function (DF) of the proper deficit are examined in particular. 相似文献
6.
Alexandru V. Asimit 《Scandinavian actuarial journal》2013,2013(2):93-104
This paper presents an extension of the classical compound Poisson risk model for which the inter-claim time and the forthcoming claim amount are no longer independent random variables (rv's). Asymptotic tail probabilities for the discounted aggregate claims are presented when the force of interest is constant and the claim amounts are heavy tail distributed rv's. Furthermore, we derive asymptotic finite time ruin probabilities, as well as asymptotic approximations for some common risk measures associated with the discounted aggregate claims. A simulation study is performed in order to validate the results obtained in the free interest risk model. 相似文献