首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
《Scandinavian actuarial journal》2013,2013(3-4):207-218
Abstract

Extract

d1. Vis, at man for n ? 2 har når x ikke antager nogen af værdierne 0, ?1, ..., ?n+1, og når x ikke antager nogen af værdierne 0, 1, ..., n+1.  相似文献   

3.
4.
Abstract

Extract

d1. Bestern karakteristikkerne for den partielle differentialigning Gør rede for, at der ved begyndelsebetingelsen z=2√x for 0<x<+∞,y=0 fastlægges netop en løsning til (*) i et passende område ω i xy-planen, og bestem denne løsning (herunder et brugbart område ω).  相似文献   

5.
6.
Abstract

Der ønskes en Analyse af Begrebet ?Korrelation? (?Baand? mellem Iagttagelser) samt en kortfattet systematisk Fremstilling af de vigtigste Metoder, der i Teori og Praksis benyttes til Behandling af korrelerede Iagttagelser. Metoderne søges kritisk belyst i Henseende til deres teoretiske Grundlag, deres naturlige Anvendelsesomraade, praktiske Betydning og andre Momenter, som kan komme i Betragtning.  相似文献   

7.
Abstract

For any continuous univariate population with finite variance there is a mathematical relation which expresses the variate-value z as a convergent series of Legendre polynomials in (2F—1), where FF(z) is the distribution function of the population, and the coefficients in this series are the expectations of homogeneous linear forms in the order statistics of random samples from the population. The relation is well adapted for estimating the median and other percentile points when nothing more is known about the population, but a random sample from it is available. The variances of these estimates can be estimated from the data. A somewhat similar relation which expresses z as a series of Chebyshev polynomials is also discussed briefly. Finally a modification of the Legendre polynomial relation enables prior knowledge of a finite extremity of the population range to be used, and a numerical illustration is given.  相似文献   

8.
9.
10.
Abstract

Let X 1, X 2,... be a sequence of independent, identically distributed random variables with P(X?0)=0, and such that pκ = ?0 x κ dP(x)<∞, k= 1, 2, 3, 4. Assume that {N(t), t?0} is a Poission stochastic process, independent of the X 1 with E(N(t))=t. For λ ? 0, let Z T= max {Σ t?1 N(t) X t ?t(p 1+λ)}. Expressions 0 ?t?T for E(Z T ), E(Z T 2), and P(Z T =0) are derived. These results are used to construct an approximation for the finite-time ruin function Ψ(u, T) = P(Z T >u) for u?0. An alternate method of approximating Ψ(u, T) was presented in [10] by Olof Thorin and exemplified in [11] by Nils Wikstad. One of the purposes of this paper is to compare the two methods for two distributions of claims where the number of claims is a Poisson variate. The paper will also discuss the advantages and disadvantages of the two methods. We will also present a comparison of our approximate figures with the exact figures for the claim distribution   相似文献   

11.
Abstract

Idet Rentestyrken efter Forløbet af Tiden t ant ages at fremstilles ved Udtrykket findes paa den simpleste Form Værdien af en kontinuert Annuitet paa 1 aarlig, betalbar i n Aar.  相似文献   

12.
abstract

Ved et Sporvognsstoppested pas serer Linje 1 hvert 6. Minut, Linje 15 hvert 7 ½ Minut; mellem de to Linjers Afgangstider antages der ikke at bestaa nogen Forbindelse. Find Sandsynligheden for:

1p0. At en tilfældig Passager maa vente kortere paa Linje 1 end paa Linje 15.

2p0. At han højst maa vente 2 Minutter for at komme med en af de to Linjer.  相似文献   

13.
14.
15.
16.
Abstract

A. Purpose of this note

Any specific application of the theory in Section 3 of the paper would demand that the statewise reserves Vj be precisely defined. There is some latitude at this point, however, and it turns out that Theorem 3 as stated may require that an appropriate definition be used. Paragraph B of the present note adds rigour on the issue. Paragraph C offers some guidance as to how to construct and compute the reserves in nontrivial cases. Some technical lemmas are placed in the final Paragraph D.  相似文献   

17.
18.
19.
L'art de faire des calculs numériques n'est point facile. Nous le savons bien, nous autres actuáires, dont le travail quotidien consiste dans la fabrication de chiffres qui doivent subsister dans la pratique. Qui a calculé beaucoup, est grand sceptique. Des expériences répétées lui ont montré que quelque grandes qu'aient été les précautions, les erreurs sont presque inévitables. Elles empoisonnent ses journées, peut-être ses nuits, elles s'introduisent à la dérobée, elles surgissent en des lieux inattendus.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号