首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We consider a class of Markovian risk models perturbed by a multiple threshold dividend strategy in which the insurer collects premiums at rate c i whenever the surplus level resides in the i-th surplus layer, i=1, 2, …,n+1 where n<∞. We derive the Laplace-Stieltjes transform (LST) of the distribution of the time to ruin as well as the discounted joint density of the surplus prior to ruin and the deficit at ruin. By interpreting that the insurer, whose gross premium rate is c, pays dividends continuously at rate d i =c?c i whenever the surplus level resides in the i-th surplus layer, we also derive the expected discounted value of total dividend payments made prior to ruin. Our results are obtained via a recursive approach which makes use of an existing connection, linking an insurer's surplus process to an embedded fluid flow process.  相似文献   

2.
In this paper, the compound Poisson risk model is considered. Inspired by Albrecher, Cheung, & Thonhauser. [(2011b). Randomized observation periods for the compound Poisson risk model: dividend. ASTIN Bulletin 41(2), 645–672], it is assumed that the insurer observes its surplus level periodically to decide on dividend payments at the arrival times of an Erlang(n) renewal process. If the observed surplus is larger than the maximum of a threshold b and the last observed (post-dividend) level, then a fraction of the excess is paid as a lump sum dividend. Ruin is declared when the observed surplus is negative. In this proposed periodic threshold-type dividend strategy, the insurer can have a ruin probability of less than one (as opposed to the periodic barrier strategy). The expected discounted dividends before ruin (denoted by V) will be analyzed. For arbitrary claim distribution, the general solution of V is derived. More explicit result for V is presented when claims have rational Laplace transform. Numerical examples are provided to illustrate the effect of randomized observations on V and the optimization of V with respect to b. When claims are exponential, convergence to the traditional threshold strategy is shown as the inter-observation times tend to zero.  相似文献   

3.
Abstract

The seminal paper by Gerber and Shiu (1998) unified and extended the study of the event of ruin and related quantities, including the time at which the event of ruin occurs, the deficit at the time of ruin, and the surplus immediately prior to ruin. The first two of these quantities are fundamentally important for risk management techniques that utilize the ideas of Value-at-Risk and Tail Value-at-Risk. As is well known, calculation of these and related quantities requires knowledge of the associated probability distributions. In this paper we derive an explicit expression for the joint (defective) distribution of the time to ruin, the surplus immediately prior to ruin, and the deficit at ruin in the classical compound Poisson risk model. As a by-product, we obtain expressions for the three bivariate distributions generated by the time to ruin, the surplus prior to ruin, and the deficit at ruin. Finally, we consider mixed Erlang claim sizes and show how the joint (defective) distribution of the time to ruin, the surplus prior to ruin, and the deficit at ruin can be calculated.  相似文献   

4.
The idea of taxation in risk process was first introduced by Albrecher, H. & Hipp, C. Lundberg’s risk process with tax. Blätter der DGVFM 28(1), 13–28, who suggested that a certain proportion of the insurer’s income is paid immediately as tax whenever the surplus process is at its running maximum. In this paper, a spectrally negative Lévy insurance risk model under taxation is studied. Motivated by the concept of randomized observations proposed by Albrecher, H., Cheung, E.C.K. & Thonhauser, S. Randomized observation periods for the compound Poisson risk model: Dividends. ASTIN Bulletin 41(2), 645–672, we assume that the insurer’s surplus level is only observed at a sequence of Poisson arrival times, at which the event of ruin is checked and tax may be collected from the tax authority. In particular, if the observed (pre-tax) level exceeds the maximum of the previously observed (post-tax) values, then a fraction of the excess will be paid as tax. Analytic expressions for the Gerber–Shiu expected discounted penalty function and the expected discounted tax payments until ruin are derived. The Cramér-Lundberg asymptotic formula is shown to hold true for the Gerber–Shiu function, and it differs from the case without tax by a multiplicative constant. Delayed start of tax payments will be discussed as well. We also take a look at the case where solvency is monitored continuously (while tax is still paid at Poissonian time points), as many of the above results can be derived in a similar manner. Some numerical examples will be given at the end.  相似文献   

5.
Abstract

If one assumes that the surplus of an insurer follows a jump-diffusion process and the insurer would invest its surplus in a risky asset, whose prices are modeled by a geometric Brownian motion, the resulting surplus for the insurer is called a jump-diffusion surplus process compounded by a geometric Brownian motion. In this resulting surplus process, ruin may be caused by a claim or oscillation. We decompose the ruin probability in the resulting surplus process into the sum of two ruin probabilities: the probability that ruin is caused by a claim, and the probability that ruin is caused by oscillation. Integro-differential equations for these ruin probabilities are derived. When claim sizes are exponentially distributed, asymptotical formulas of the ruin probabilities are derived from the integro-differential equations, and it is shown that all three ruin probabilities are asymptotical power functions with the same orders and that the orders of the power functions are determined by the drift and volatility parameters of the geometric Brownian motion. It is known that the ruin probability for a jump-diffusion surplus process is an asymptotical exponential function when claim sizes are exponentially distributed. The results of this paper further confirm that risky investments for an insurer are dangerous in the sense that either ruin is certain or the ruin probabilities are asymptotical power functions, not asymptotical exponential functions, when claim sizes are exponentially distributed.  相似文献   

6.
7.
Abstract

In this paper we derive some results on the dividend payments prior to ruin in a Markovmodulated risk process in which the rate for the Poisson claim arrival process and the distribution of the claim sizes vary in time depending on the state of an underlying (external) Markov jump process {J(t); t ≥ 0}. The main feature of the model is the flexibility in modeling the arrival process in the sense that periods with very frequent arrivals and periods with very few arrivals may alternate, and that the states of {J(t); t ≥ 0} could describe, for example, epidemic types in health insurance or weather conditions in car insurance. A system of integro-differential equations with boundary conditions satisfied by the nth moment of the present value of the total dividends prior to ruin, given the initial environment state, is derived and solved. We show that the probabilities that the surplus process attains a dividend barrier from the initial surplus without first falling below zero and the Laplace transforms of the time that the surplus process first hits a barrier without ruin occurring can be expressed in terms of the solution of the above-mentioned system of integro-differential equations. In the two-state model, explicit results are obtained when both claim amounts are exponentially distributed.  相似文献   

8.
We consider an insurance company whose surplus is represented by the classical Cramer-Lundberg process. The company can invest its surplus in a risk-free asset and in a risky asset, governed by the Black-Scholes equation. There is a constraint that the insurance company can only invest in the risky asset at a limited leveraging level; more precisely, when purchasing, the ratio of the investment amount in the risky asset to the surplus level is no more than a; and when short-selling, the proportion of the proceeds from the short-selling to the surplus level is no more than b. The objective is to find an optimal investment policy that minimizes the probability of ruin. The minimal ruin probability as a function of the initial surplus is characterized by a classical solution to the corresponding Hamilton-Jacobi-Bellman (HJB) equation. We study the optimal control policy and its properties. The interrelation between the parameters of the model plays a crucial role in the qualitative behavior of the optimal policy. For example, for some ratios between a and b, quite unusual and at first ostensibly counterintuitive policies may appear, like short-selling a stock with a higher rate of return to earn lower interest, or borrowing at a higher rate to invest in a stock with lower rate of return. This is in sharp contrast with the unrestricted case, first studied in Hipp and Plum, or with the case of no short-selling and no borrowing studied in Azcue and Muler.  相似文献   

9.
Abstract

In this paper an extension of the semi-Markovian risk model studied by Albrecher and Boxma (2005) is considered by allowing for general interclaim times. In such a model, we follow the ideas of Cheung et al. (2010b) and consider a generalization of the Gerber-Shiu function by incorporating two more random variables in the traditional penalty function, namely, the minimum surplus level before ruin and the surplus level immediately after the second last claim prior to ruin. It is shown that the generalized Gerber-Shiu function satisfies a matrix defective renewal equation. Detailed examples are also considered when either the interclaim times or the claim sizes are exponentially distributed. Finally, we also consider the case where the claim arrival process follows a Markovian arrival process. Probabilistic arguments are used to derive the discounted joint distribution of four random variables of interest in this risk model by capitalizing on an existing connection with a particular fluid flow process.  相似文献   

10.

The only way to avoid ruin in the classical model of the collective risk theory is that the surplus increases to infinity. We consider a modified model with a dividend barrier that prevents this behavior. It is shown that there is a simple approximation formula for the time of ruin when the level of the dividend barrier is high and the Cramér-Lundberg condition is satisfied. A numerical example is presented in the case when the claims are exponentially distributed. The relation to queuing theory is used to derive the proportion of time the surplus is below some given level.  相似文献   

11.
Abstract

In this paper I show how methods that have been applied to derive results for the classical risk process can be adapted to derive results for a class of risk processes in which claims occur as a renewal process. In particular, claims occur as an Erlang process. I consider the problem of finding the survival probability for such risk processes and then derive expressions for the probability and severity of ruin and for the probability of absorption by an upper barrier. Finally, I apply these results to consider the problem of finding the distribution of the maximum deficit during the period from ruin to recovery to surplus level 0.  相似文献   

12.
Abstract

This paper studies the joint distribution of the time of ruin, the surplus immediately before ruin, and the deficit at ruin. The time of ruin is analyzed in terms of its Laplace transforms, which can naturally be interpreted as discounting. Hence the classical risk theory model is generalized by discounting with respect to the time of ruin. We show how to calculate an expected discounted penalty, which is due at ruin and may depend on the deficit at ruin and on the surplus immediately before ruin. The expected discounted penalty, considered as a function of the initial surplus, satisfies a certain renewal equation, which has a probabilistic interpretation. Explicit answers are obtained for zero initial surplus, very large initial surplus, and arbitrary initial surplus if the claim amount distribution is exponential or a mixture of exponentials. We generalize Dickson’s formula, which expresses the joint distribution of the surplus immediately prior to and at ruin in terms of the probability of ultimate ruin. Explicit results are obtained when dividends are paid out to the stockholders according to a constant barrier strategy.  相似文献   

13.
Abstract

Phase-type distributions are one of the most general classes of distributions permitting a Markovian interpretation. Sparre Andersen risk models with phase-type claim interarrival times or phase-type claims can be analyzed using Markovian techniques, and results can be expressed in compact matrix forms. Computations involved are readily programmable in practice.

This paper studies some quantities associated with the first passage time and the time of ruin in a Sparre Andersen risk model with phase-type interclaim times. In an earlier discussion the present author obtained a matrix expression for the Laplace transform of the first time that the surplus process reaches a given target from the initial surplus. Using this result, we analyze (1) the Laplace transform of the recovery time after ruin, (2) the probability that the surplus attains a certain level before ruin, and (3) the distribution of the maximum severity of ruin. We also give a matrix expression for the expected discounted dividend payments prior to ruin for the Sparre Andersen model in the presence of a constant dividend barrier.  相似文献   

14.
We consider a multi-threshold compound Poisson surplus process. When the initial surplus is between any two consecutive thresholds, the insurer has the option to choose the respective premium rate and interest rate. Also, the model allows for borrowing the current amount of deficit whenever the surplus falls below zero. Starting from the integro-differential equations satisfied by the Gerber–Shiu function that appear in Yang et al. (2008), we consider exponentially and phase-type(2) distributed claim sizes, in which cases we are able to transform the integro-differential equations into ordinary differential equations. As a result, we obtain explicit expressions for the Gerber–Shiu function.  相似文献   

15.
16.

In this paper we consider a risk process in which claim inter-arrival times have a phase-type(2) distribution, a distribution with a density satisfying a second order linear differential equation. We consider some ruin related problems. In particular, we consider the compound geometric representation of the infinite time survival probability, as well as the (defective) distributions of the surplus immediately prior to ruin and of the deficit at ruin. We also consider explicit solutions for the infinite time ruin probability in the case where the individual claim amount distribution is phase-type.  相似文献   

17.
In this paper we consider a risk reserve process where the arrivals (either claims or capital injections) occur according to a Markovian point process. Both claim and capital injection sizes are phase-type distributed and the model allows for possible correlations between these and the inter-claim times. The premium income is modelled by a Markov-modulated Brownian motion which may depend on the underlying phases of the point arrival process. For this risk reserve model we derive a generalised Gerber–Shiu measure that is the joint distribution of the time to ruin, the surplus immediately before ruin, the deficit at ruin, the minimal risk reserve before ruin, and the time until this minimum is attained. Numeral examples illustrate the influence of the parameters on selected marginal distributions.  相似文献   

18.
This paper presents an explicit characterization for the joint probability density function of the surplus immediately prior to ruin and the deficit at ruin for a general risk process, which includes the Sparre-Andersen risk model with phase-type inter-claim times and claim sizes. The model can also accommodate a Markovian arrival process which enables claim sizes to be correlated with the inter-claim times. The marginal density function of the surplus immediately prior to ruin is specifically considered. Several numerical examples are presented to illustrate the application of this result.  相似文献   

19.
For a large motor insurance portfolio, on an open environment, we study the impact of experience rating in finite and continuous time ruin probabilities. We consider a model for calculating ruin probabilities applicable to large portfolios with a Markovian Bonus-Malus System (BMS), based on claim counts, for an automobile portfolio using the classical risk framework model. New challenges are brought when an open portfolio scenario is introduced. When compared with a classical BMS approach ruin probabilities may change significantly. By using a BMS of a Portuguese insurer, we illustrate and discuss the impact of the proposed formulation on the initial surplus required to target a given ruin probability. Under an open portfolio setup, we show that we may have a significant impact on capital requirements when compared with the classical BMS, by having a significant reduction on the initial surplus needed to maintain a fixed level of the ruin probability.  相似文献   

20.
In this paper, we consider the problem of optimal investment by an insurer. The wealth of the insurer is described by a Cramér–Lundberg process. The insurer invests in a market consisting of a bank account and m risky assets. The mean returns and volatilities of the risky assets depend linearly on economic factors that are formulated as the solutions of linear stochastic differential equations. Moreover, the insurer preferences are exponential. With this setting, a Hamilton–Jacobi–Bellman equation that is derived via a dynamic programming approach has an explicit solution found by solving the matrix Riccati equation. Hence, the optimal strategy can be constructed explicitly. Finally, we present some numerical results related to the value function and the ruin probability using the optimal strategy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号