首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 968 毫秒
1.
Abstract

We study a Cox risk model that accounts for both seasonal variations and random fluctuations in the claims intensity. This occurs with natural phenomena that evolve in a seasonal environment and affect insurance claims, such as hurricanes.

More precisely, we define an intensity process governed by a periodic function with a random peak level. The periodic intensity function follows a deterministic pattern in each short-term period and is illustrated by a beta-type function. A Markov chain with m states, corresponding to different risk levels, is chosen for the level process, yielding a so-called regime-switching process.

The properties of the corresponding claim-counting process are discussed in detail. By properly defining a Lundberg-type coefficient, we derive upper bounds for finite time ruin probabilities in a two-state case.  相似文献   

2.
Abstract

In this paper we consider the Sparre Andersen insurance risk model. Three cases are discussed: the ordinary renewal risk process, stationary renewal risk process, and s-delayed renewal risk process. In the first part of the paper we study the joint distribution of surplus immediately before and at ruin under the renewal insurance risk model. By constructing an exponential martingale, we obtain Lundberg-type upper bounds for the joint distribution. Consequently we obtain bounds for the distribution of the deficit at ruin and ruin probability. In the second part of the paper, we consider the special case of phase-type claims and rederive the closed-form expression for the distribution of the severity of ruin, obtained by Drekic et al. (2003, 2004). Finally, we present some numerical results to illustrate the tightness of the bounds obtained in this paper.  相似文献   

3.
We propose a multidimensional risk model where the common shock affecting all classes of insurance business is arriving according to a non-homogeneous periodic Poisson process. In this multivariate setting, we derive upper bounds of Lundberg-type for the probability that ruin occurs in all classes simultaneously using the martingale approach via piecewise deterministic Markov processes theory. These results are numerically illustrated in a bivariate risk model, where the beta-shape periodic claim intensity function is considered. Under the assumption of dependent heavy-tailed claims, asymptotic bounds for the finite-time ruin probabilities associated to three types of ruin in this multivariate framework are investigated.  相似文献   

4.
Abstract

This paper presents a general probabilistic model, including stochastic discounting, for life insurance contracts, either a single policy or a portfolio of policies. In § 4 we define prospective reserves and annual losses in terms of our model and we show that these are generalisations of the corresponding concepts in conventional life insurance mathematics. Our main results are in § 5 where we use the martingale property of the loss process to derive upper bounds for the probability of ruin for the portfolio. These results are illustrated by two numerical examples in § 6.  相似文献   

5.
In this paper, the asymptotic decay of finite time ruin probabilities is studied. An insurance company is considered that faces heavy-tailed claims and makes investments in risky assets whose prices evolve according to quite general semimartingales. In this setting, the ruin problem corresponds to determining hitting probabilities for the solution to a randomly perturbed stochastic integral equation. A large deviation result for the hitting probabilities is derived that holds uniformly over a family of semimartingales. This result gives the asymptotic decay of finite time ruin probabilities under sufficiently conservative investment strategies, including ruin-minimizing strategies. In particular, as long as the insurance company invests sufficiently conservatively, the investment strategy has only a moderate impact on the asymptotics of the ruin probability.  相似文献   

6.

In this paper, we consider a discrete time risk model. First we discuss the classical model, both exponential and non-exponential upper bounds for ruin probabilities are obtained by using martingale inequalities. Then similar results are obtained for the model with investment income.  相似文献   

7.

Explicit, two-sided bounds are derived for the probability of ruin of an insurance company, whose premium income is represented by an arbitrary, increasing real function, the claims are dependent, integer valued r.v.s and their inter-occurrence times are exponentially, non-identically distributed. It is shown, that the two bounds coincide when the moments of the claims form a Poisson point process. An expression for the survival probability is further derived in this special case, assuming that the claims are integer valued, i.i.d. r.v.s. This expression is compared with a different formula, obtained recently by Picard & Lefevre (1997) in terms of generalized Appell polynomials. The particular case of constant rate premium income and non-zero initial capital is considered. A connection of the survival probability to multivariate B -splines is also established.  相似文献   

8.

In the context of the classical Poisson ruin model Gerber (1988a,b) and Shiu (1987, 1989) have obtained two formulae for the ruin and non ruin probabilities in infinite time. Here these two formulae are generalized to the case of an arbitrary premium process when all claims are integer-valued, as in Picard & Lefèvre (1997). Moreover, this generalization throws a new light on the two known formulae and it then leads very simply to a third new formula.  相似文献   

9.
Abstract

Upper and lower bounds are obtained for ruin probabilities with safety margin ρ in the case of known expectation, variance and range for the claim severity function.  相似文献   

10.
A large part of the actuarial literature is devoted to the derivation of ruin probabilities in various non-life insurance risk models. On the contrary, very few papers deal with ruin probabilities for life insurance portfolios. The difficulties arise from the dependence and non-stationarity of the annual payments made by the insurance company. This paper shows that the ruin probability in case of life annuity portfolios can be computed from algorithms derived by De Pril (1989) and Dhaene & Vandebroek (1995). Approximations for ruin probabilities are discussed. The present article complements the works of Frostig et al. (2003) who considered whole life, endowment, and temporary assurances, and of Denuit & Frostig (2008) who considered homogeneous life annuities portfolios. Here, heterogeneous portfolios (with respect to age and/or face amounts) are studied. Particular attention is paid to the capital allocation problem. The total amount of reserve is shared among the risk classes in order to minimize the ruin probability. It is then fair to charge a higher margin to the risk classes requiring more capital.  相似文献   

11.
Abstract

A wide variety of distributions are shown to be of mixed-Erlang type. Useful computational formulas result for many quantities of interest in a risk-theoretic context when the claim size distribution is an Erlang mixture. In particular, the aggregate claims distribution and related quantities such as stop-loss moments are discussed, as well as ruin-theoretic quantities including infinitetime ruin probabilities and the distribution of the deficit at ruin. A very useful application of the results is the computation of finite-time ruin probabilities, with numerical examples given. Finally, extensions of the results to more general gamma mixtures are briefly examined.  相似文献   

12.
In this paper, we first study orders, valid up to a certain positive initial surplus, between a pair of ruin probabilities resulting from two individual claim size random variables for corresponding continuous time surplus processes perturbed by diffusion. The results are then applied to obtain a smooth upper (lower) bound for the underlying ruin probability; the upper (lower) bound is constructed from exponentially distributed claims, provided that the mean residual lifetime function of the underlying random variable is non-decreasing (non-increasing). Finally, numerical examples are given to illustrate the constructed upper bounds for ruin probabilities with comparisons to some existing ones.  相似文献   

13.
Abstract

The problem of modeling claims occurring in periodic random environments is discussed in this paper. In the classical approach of risk theory, the occurrence of claims is modeled by counting processes that do not account for claims following a periodic pattern. The author discusses how the use of the classical approach to model a periodic portfolio might lead to the miscalculation of important risk indices, namely the associated ruin probability.

He presents a periodic model, in terms of nonhomogeneous Poisson processes, that has potential practical applications. The discussion is based on some properties of the modeled periodic intensities. Existing simulation techniques are adapted to this periodic model, which provides a practical way to evaluate ruin probabilities.  相似文献   

14.
Abstract

Growing research interest has been shown in finite-time ruin probabilities for discrete risk processes, even though the literature is not as extensive as for continuous-time models. The general approach is through the so-called Gerber-Shiu discounted penalty function, obtained for large families of claim severities and discrete risk models. This paper proposes another approach to deriving recursive and explicit formulas for finite-time ruin probabilities with exponential or geometric claim severities. The proposed method, as compared to the general Gerber-Shiu approach, is able to provide simpler derivation and straightforward expressions for these two special families of claims.  相似文献   

15.
Upper and lower bounds of ruin probabilities for the S. Andersen model with large claims are proposed. The bounds are stated in terms of the corresponding ladder height distribution and have a reasonable accuracy, which is illustrated by numerical examples. Comparison with other known bounds is given.  相似文献   

16.
Abstract

This paper studies the solvency of an insurance firm in the presence of underwriting cycles. A small or medium-size insurance company with a price-taker position in the market is considered. Its premium income is assumed to obey an autoregressive process with cycles. Specifically, the premium income for a specific calendar year is influenced by the market experience for the last couple years. Under this classical AR(2) dynamics governing the premium income, an explicit expression for the ultimate ruin probability is derived, using a martingale approach, in the lighttailed claims case. Furthermore, the logarithmic asymptotic behavior of the ultimate ruin probability as well as the typical path to ruin are investigated. Then a comparison is made with the classical case where the same company operates on a market without such cycles. Asymptotically, the presence of market cycles is shown to increase the risk for the company. Numerical illustrations are performed on Canadian motor insurance market data and support the theoretical analysis.  相似文献   

17.
According to Solvency II directive, each insurance company could determine solvency capital requirements using its own, tailor made, internal model. This highlights the urgency of having fast numerical tools based on practically-oriented mathematical models. From the Solvency II perspective discrete time framework seems to be the most relevant one. In this paper, we propose a number of fast and accurate approximations of ruin probabilities involving some integral operator and examine them along strictly theoretical as well as numerical lines. For a few claim distributions the approximations are shown to be exact. In general, we prove that they converge with an exponential rate to the exact ruin probabilities without any restrictive assumptions on the claim distribution. A fast algorithm to approximate ruin probabilities by a numerical fixed point of the involved integral operator is given. As an application, ruin probabilities for, e.g. normally and Weibull – distributed claims are computed. Comparisons with discrete time counterparts of some continuous time approximation methods are also carried out. Numerical studies show that our approximations are precise both for small and large values of the initial surplus u. In contrast, the empirical De Vylder-type ones strongly depend on the claim distributions and are less precise for small and medium values of u.  相似文献   

18.
Abstract

In this paper we derive some results on the dividend payments prior to ruin in a Markovmodulated risk process in which the rate for the Poisson claim arrival process and the distribution of the claim sizes vary in time depending on the state of an underlying (external) Markov jump process {J(t); t ≥ 0}. The main feature of the model is the flexibility in modeling the arrival process in the sense that periods with very frequent arrivals and periods with very few arrivals may alternate, and that the states of {J(t); t ≥ 0} could describe, for example, epidemic types in health insurance or weather conditions in car insurance. A system of integro-differential equations with boundary conditions satisfied by the nth moment of the present value of the total dividends prior to ruin, given the initial environment state, is derived and solved. We show that the probabilities that the surplus process attains a dividend barrier from the initial surplus without first falling below zero and the Laplace transforms of the time that the surplus process first hits a barrier without ruin occurring can be expressed in terms of the solution of the above-mentioned system of integro-differential equations. In the two-state model, explicit results are obtained when both claim amounts are exponentially distributed.  相似文献   

19.
Abstract

The traditional theory of collective risk is concerned with fluctuations in the capital reserve {Y(t): t ?O} of an insurance company. The classical model represents {Y(t)} as a positive constant x (initial capital) plus a deterministic linear function (cumulative income) minus a compound Poisson process (cumulative claims). The central problem is to determine the ruin probability ψ(x) that capital ever falls to zero. It is known that, under reasonable assumptions, one can approximate {Y(t)} by an appropriate Wiener process and hence ψ(.) by the corresponding exponential function of (Brownian) first passage probabilities. This paper considers the classical model modified by the assumption that interest is earned continuously on current capital at rate β > O. It is argued that Y(t) can in this case be approximated by a diffusion process Y*(t) which is closely related to the classical Ornstein-Uhlenbeck process. The diffusion {Y*(t)}, which we call compounding Brownian motion, reduces to the ordinary Wiener process when β = O. The first passage probabilities for Y*(t) are found to form a truncated normal distribution, which approximates the ruin function ψ(.) for the model with compounding assets. The approximate expression for ψ(.) is compared against the exact expression for a special case in which the latter is known. Assuming parameter values for which one would anticipate a good approximation, the two expressions are found to agree extremely well over a wide range of initial asset levels.  相似文献   

20.
We investigate models with negative risk sums when the company invests its reserve into a risky asset whose price follows a geometric Brownian motion. Our main result is an exact asymptotic of the ruin probabilities for the case of exponentially distributed benefits. As in the case of non-life insurance with exponential claims, the ruin probabilities are either decreasing with a rate given by a power function (the case of small volatility) or equal to one identically (the case of large volatility). The result allows us to quantify the share of reserve to invest into such a risky asset to avoid a catastrophic outcome, namely the ruin with probability one. We address also the question of smoothness of the ruin probabilities as a function of the initial reserve for generally distributed jumps.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号