首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
We develop a new approach for pricing European-style contingent claims written on the time T spot price of an underlying asset whose volatility is stochastic. Like most of the stochastic volatility literature, we assume continuous dynamics for the price of the underlying asset. In contrast to most of the stochastic volatility literature, we do not directly model the dynamics of the instantaneous volatility. Instead, taking advantage of the recent rise of the variance swap market, we directly assume continuous dynamics for the time T variance swap rate. The initial value of this variance swap rate can either be directly observed, or inferred from option prices. We make no assumption concerning the real world drift of this process. We assume that the ratio of the volatility of the variance swap rate to the instantaneous volatility of the underlying asset just depends on the variance swap rate and on the variance swap maturity. Since this ratio is assumed to be independent of calendar time, we term this key assumption the stationary volatility ratio hypothesis (SVRH). The instantaneous volatility of the futures follows an unspecified stochastic process, so both the underlying futures price and the variance swap rate have unspecified stochastic volatility. Despite this, we show that the payoff to a path-independent contingent claim can be perfectly replicated by dynamic trading in futures contracts and variance swaps of the same maturity. As a result, the contingent claim is uniquely valued relative to its underlying’s futures price and the assumed observable variance swap rate. In contrast to standard models of stochastic volatility, our approach does not require specifying the market price of volatility risk or observing the initial level of instantaneous volatility. As a consequence of our SVRH, the partial differential equation (PDE) governing the arbitrage-free value of the contingent claim just depends on two state variables rather than the usual three. We then focus on the consistency of our SVRH with the standard assumption that the risk-neutral process for the instantaneous variance is a diffusion whose coefficients are independent of the variance swap maturity. We show that the combination of this maturity independent diffusion hypothesis (MIDH) and our SVRH implies a very special form of the risk-neutral diffusion process for the instantaneous variance. Fortunately, this process is tractable, well-behaved, and enjoys empirical support. Finally, we show that our model can also be used to robustly price and hedge volatility derivatives.  相似文献   

2.
We develop a discrete-time stochastic volatility option pricing model exploiting the information contained in the Realized Volatility (RV), which is used as a proxy of the unobservable log-return volatility. We model the RV dynamics by a simple and effective long-memory process, whose parameters can be easily estimated using historical data. Assuming an exponentially affine stochastic discount factor, we obtain a fully analytic change of measure. An empirical analysis of Standard and Poor's 500 index options illustrates that our model outperforms competing time-varying and stochastic volatility option pricing models.  相似文献   

3.
The Black–Scholes model is based on a one-parameter pricing kernel with constant elasticity. Theoretical and empirical results suggest declining elasticity and, hence, a pricing kernel with at least two parameters. We price European-style options on assets whose probability distributions have two unknown parameters. We assume a pricing kernel which also has two unknown parameters. When certain conditions are met, a two-dimensional risk-neutral valuation relationship exists for the pricing of these options: i.e. the relationship between the price of the option and the prices of the underlying asset and one other option on the asset is the same as it would be under risk neutrality. In this class of models, the price of the underlying asset and that of one other option take the place of the unknown parameters.   相似文献   

4.
5.
Existing evidence indicates that average returns of purchased market-hedge S&P 500 index calls, puts, and straddles are non-zero but large and negative, which implies that options are expensive. This result is intuitively explained by means of volatility risk and a negative volatility risk premium, but there is a recent surge of empirical and analytical studies which also attempt to find the sources of this premium. An important question in the line of a priced volatility explanation is if a standard stochastic volatility model can also explain the cross-sectional findings of these empirical studies. The answer is fairly positive. The volatility elasticity of calls and puts is several times the level of market volatility, depending on moneyness and maturity, and implies a rich cross-section of negative average option returns—even if volatility risk is not priced heavily, albeit negative. We introduce and calibrate a new measure of option overprice to explain these results. This measure is robust to jump risk if jumps are not priced.   相似文献   

6.
We study the cross-sectional performance of option pricing models in which the volatility of the underlying stock is a deterministic function of the stock price and time. For each date in our sample of FTSE 100 index option prices, we fit an implied binomial tree to the panel of all European style options with different strike prices and maturities and then examine how well this model prices a corresponding panel of American style options. We find that the implied binomial tree model performs no better than an ad-hoc procedure of smoothing Black–Scholes implied volatilities across strike prices and maturities. Our cross-sectional results complement the time-series findings of Dumas et al. [J. Finance 53 (1998) 2059].  相似文献   

7.
The number of tailor-made hybrid structured products has risen more prominently to fit each investor’s preferences and requirements as they become more diversified. The structured products entail synthetic derivatives such as combinations of bonds and/or stocks conditional on how they are backed up by underlying securities, stochastic volatility, stochastic interest rates or exchanges rates. The complexity of these multi-asset structures yields lots of difficulties of pricing the products. Because of the complexity, Monte-Carlo simulation is a possible choice to price them but it may not produce stable Greeks leading to a trouble in hedging against risks. In this light, it is desirable to use partial differential equations with relevant analytic and numerical techniques. Even if the partial differential equation method would generate stable security prices and Greeks for single asset options, however, it may result in the curse of dimensionality when pricing multi-asset derivatives. In this study, we make the best use of multi-scale nature of stochastic volatility to lift the curse of dimensionality for up to three asset cases. Also, we present a transformation formula by which the pricing group parameters required for the multi-asset options in illiquid market can be calculated from the underlying market parameters.  相似文献   

8.
This paper investigates the role of stochastic volatility and return jumps in reproducing the volatility dynamics and the shape characteristics of the Korean Composite Stock Price Index (KOSPI) 200 returns distribution. Using efficient method of moments and reprojection analysis, we find that stochastic volatility models, both with and without return jumps, capture return dynamics surprisingly well. The stochastic volatility model without return jumps, however, cannot fully reproduce the conditional kurtosis implied by the data. Return jumps successfully complement this gap. We also find that return jumps are essential in capturing the volatility smirk effects observed in short-term options.
Sol KimEmail:
  相似文献   

9.
We present a generalization of Cochrane and Saá-Requejo’s good-deal bounds which allows to include in a flexible way the implications of a given stochastic discount factor model. Furthermore, a useful application to stochastic volatility models of option pricing is provided where closed-form solutions for the bounds are obtained. A calibration exercise demonstrates that our benchmark good-deal pricing results in much tighter bounds. Finally, a discussion of methodological and economic issues is also provided.   相似文献   

10.
In this paper, we examine the time variation in transaction costs relative to excess returns, in a panel consisting of 10 international equity indices over the time period 1984–2005. This is undertaken by extending the consumption CAPM (CCAPM) model proposed by Campbell and Shiller (Rev. Financ. Stud. 1:195–228, 1988) to incorporate time varying proportional transaction costs. We rigorously address both the cross-country heterogeneity in the estimated model and endogeneity. We find strong evidence that suggests transaction costs should be included as an additional explanatory variable in the CCAPM. This leads to the conclusion that transaction costs should be included in asset pricing models as their stochastic process impacts directly on private consumption expenditure.
Andros GregoriouEmail:
  相似文献   

11.
We find a closed-form formula for valuing a time-switch option where its underlying asset is affected by a stochastically changing market environment, and apply it to the valuation of other qualitative options such as corridor options and options in foreign exchange markets. The stochastic market environment is modeled as a Markov regime-switching process. This analytic formula provides us with a rapid and accurate scheme for valuing qualitative options with stochastic volatility.  相似文献   

12.
This study presents a new method of pricing options on assets with stochastic volatility that is lattice based, and can easily accommodate early exercise for American options. Unlike traditional lattice methods, recombination is not a problem in the new model, and it is easily adapted to alternative volatility processes. Approximations are developed for European C.E.V. calls and American stochastic volatility calls. The application of the pricing model to exchange traded calls is also illustrated using a sample of market prices. Modifying the model to price American puts is straightforward, and the approach can easily be extended to other non-recombining lattices.  相似文献   

13.
14.
In this paper, we characterize the multiperiod minimum-risk hedge strategy within the stochastic volatility (SV) framework and compare it to other hedge strategies on the basis of hedging performance. Using crude oil markets as an example, we demonstrate that the SV model is appropriate in depicting price behaviour. However, ex ante and ex post comparisons indicate that the SV strategy is inferior to conventional hedging strategies. There is also evidence that the Generalized Autoregressive Conditional Heteroskedasticity (GARCH) strategy may be better than the SV strategy, at least in terms of variance reduction.  相似文献   

15.
We model the volatility of a single risky asset using a multifactor (matrix) Wishart affine process, recently introduced in finance by Gourieroux and Sufana. As in standard Duffie and Kan affine models the pricing problem can be solved through the Fast Fourier Transform of Carr and Madan. A numerical illustration shows that this specification provides a separate fit of the long-term and short-term implied volatility surface and, differently from previous diffusive stochastic volatility models, it is possible to identify a specific factor accounting for the stochastic leverage effect, a well-known stylized fact of the FX option markets analysed by Carr and Wu.  相似文献   

16.
We study the parametric problem of estimating the drift coefficient in a stochastic volatility model , where Y is a log price process and V the volatility process. Assuming that one can recover the volatility, precisely enough, from the observation of the price process, we construct an efficient estimator for the drift parameter of the diffusion V. As an application we present the efficient estimation based on the discrete sampling with δ n →0 and n δ n →∞. We show that our setup is general enough to cover the case of ‘microstructure noise’ for the price process as well.   相似文献   

17.
Alizadeh, Brandt, and Diebold [2002. Journal of Finance 57, 1047–1091] propose estimating stochastic volatility models by quasi-maximum likelihood using data on the daily range of the log asset price process. We suggest a related Bayesian procedure that delivers exact likelihood based inferences. Our approach also incorporates data on the daily return and accommodates a nonzero drift. We illustrate through a Monte Carlo experiment that quasi-maximum likelihood using range data alone is remarkably close to exact likelihood based inferences using both range and return data.  相似文献   

18.
We provide the first recursive quantization-based approach for pricing options in the presence of stochastic volatility. This method can be applied to any model for which an Euler scheme is available for the underlying price process and it allows one to price vanillas, as well as exotics, thanks to the knowledge of the transition probabilities for the discretized stock process. We apply the methodology to some celebrated stochastic volatility models, including the Stein and Stein [Rev. Financ. Stud. 1991, (4), 727–752] model and the SABR model introduced in Hagan et al. [Wilmott Mag., 2002, 84–108]. A numerical exercise shows that the pricing of vanillas turns out to be accurate; in addition, when applied to some exotics like equity-volatility options, the quantization-based method overperforms by far the Monte Carlo simulation.  相似文献   

19.
We determine the variance-optimal hedge for a subset of affine processes including a number of popular stochastic volatility models. This framework does not require the asset to be a martingale. We obtain semiexplicit formulas for the optimal hedging strategy and the minimal hedging error by applying general structural results and Laplace transform techniques. The approach is illustrated numerically for a Lévy-driven stochastic volatility model with jumps as in Carr et al. (Math Finance 13:345–382, 2003).   相似文献   

20.
In pricing primary-market options and in making secondary markets, financial intermediaries depend on the quality of forecasts of the variance of the underlying assets. Hence, pricing of options provides the appropriate test of forecasts of asset volatility. NYSE index returns over the period of 1968–1991 suggest that pricing index options of up to 90-days maturity would be more accurate when: (1) using ARCH specifications in place of a moving average of squared returns; (2) using Hull and White's (1987) adjustment for stochastic variance in the Black and Scholes formula; (3) accounting explicitly for weekends and the slowdown of variance whenever the market is closed. (JEL C22, C53, C10, G11, G12)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号