首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This article applies realized volatility forecasting to Extreme Value Theory (EVT). We propose a two-step approach where returns are first pre-whitened with a high-frequency based volatility model, and then an EVT based model is fitted to the tails of the standardized residuals. This realized EVT approach is compared to the conditional EVT of McNeil & Frey (2000). We assess both approaches' ability to filter the dependence in the extremes and to produce stable out-of-sample VaR and ES estimates for one-day and ten-day time horizons. The main finding is that GARCH-type models perform well in filtering the dependence, while the realized EVT approach seems preferable in forecasting, especially at longer time horizons.  相似文献   

2.
We use stock market data to analyze the quality of alternative models and procedures for forecasting expected shortfall (ES) at different significance levels. We compute ES forecasts from conditional models applied to the full distribution of returns as well as from models that focus on tail events using extreme value theory (EVT). We also apply the semiparametric filtered historical simulation (FHS) approach to ES forecasting to obtain 10-day ES forecasts. At the 10-day horizon we combine FHS with EVT. The performance of the different models is assessed using six different ES backtests recently proposed in the literature. Our results suggest that conditional EVT-based models produce more accurate 1-day and 10-day ES forecasts than do non-EVT based models. Under either approach, asymmetric probability distributions for return innovations tend to produce better forecasts. Incorporating EVT in parametric or semiparametric approaches also improves ES forecasting performance. These qualitative results are also valid for the recent crisis period, even though all models then underestimate the level of risk. FHS narrows the range of numerical forecasts obtained from alternative models, thereby reducing model risk. Combining EVT and FHS seems to be best approach for obtaining accurate ES forecasts.  相似文献   

3.
Financial risk management typically deals with low-probability events in the tails of asset price distributions. To capture the behavior of these tails, one should therefore rely on models that explicitly focus on the tails. Extreme value theory (EVT)-based models do exactly that, and in this paper, we apply both unconditional and conditional EVT models to the management of extreme market risks in stock markets. We find conditional EVT models to give particularly accurate Value-at-Risk (VaR) measures, and a comparison with traditional (Generalized ARCH (GARCH)) approaches to calculate VaR demonstrates EVT as being the superior approach both for standard and more extreme VaR quantiles.  相似文献   

4.
The purpose of the study is to estimate tail-related risk measures using extreme value theory (EVT) in the Indian stock market. The study employs a two stage approach of conditional EVT originally proposed by McNeil and Frey (2000) to estimate dynamic Value at Risk (VaR) and expected shortfall (ES). The dynamic risk measures have been estimated for different percentiles for negative and positive returns. The estimates of risk measures computed under different quantile levels exhibit strong stability across a range of the selected thresholds, implying the accuracy and reliability of the estimated quantile based risk measures.  相似文献   

5.
We propose a method for estimating Value at Risk (VaR) and related risk measures describing the tail of the conditional distribution of a heteroscedastic financial return series. Our approach combines pseudo-maximum-likelihood fitting of GARCH models to estimate the current volatility and extreme value theory (EVT) for estimating the tail of the innovation distribution of the GARCH model. We use our method to estimate conditional quantiles (VaR) and conditional expected shortfalls (the expected size of a return exceeding VaR), this being an alternative measure of tail risk with better theoretical properties than the quantile. Using backtesting of historical daily return series we show that our procedure gives better 1-day estimates than methods which ignore the heavy tails of the innovations or the stochastic nature of the volatility. With the help of our fitted models we adopt a Monte Carlo approach to estimating the conditional quantiles of returns over multiple-day horizons and find that this outperforms the simple square-root-of-time scaling method.  相似文献   

6.
7.
Forecasting Value-at-Risk (VaR) for financial portfolios is a crucial task in applied financial risk management. In this paper, we compare VaR forecasts based on different models for return interdependencies: volatility spillover (Engle & Kroner, 1995), dynamic conditional correlations (Engle, 2002, 2009) and (elliptical) copulas (Embrechts et al., 2002). Moreover, competing models for marginal return distributions are applied. In particular, we apply extreme value theory (EVT) models to GARCH-filtered residuals to capture excess returns.Drawing on a sample of daily data covering both calm and turbulent market phases, we analyze portfolios consisting of German Stocks, national indices and FX-rates. VaR forecasts are evaluated using statistical backtesting and Basel II criteria. The extensive empirical application favors the elliptical copula approach combined with extreme value theory (EVT) models for individual returns. 99% VaR forecasts from the EVT-GARCH-copula model clearly outperform estimates from alternative models accounting for dynamic conditional correlations and volatility spillover for all asset classes in times of financial crisis.  相似文献   

8.
Intraday Value-at-Risk (VaR) is one of the risk measures used by market participants involved in high-frequency trading. High-frequency log-returns feature important kurtosis (fat tails) and volatility clustering (extreme log-returns appear in clusters) that VaR models should take into account. We propose a marked point process model for the excesses of the time series over a high threshold that combines Hawkes processes for the exceedances with a generalized Pareto distribution model for the marks (exceedance sizes). The conditional approach features intraday clustering of extremes and is used to calculate instantaneous conditional VaR. The models are backtested on real data and compared to a competitor approach that proposes a nonparametric extension of the classical peaks-over-threshold method. Maximum likelihood estimation is computationally intensive; we use a differential evolution genetic algorithm to find adequate starting values for the optimization process.  相似文献   

9.
Under the framework of dynamic conditional score, we propose a parametric forecasting model for Value-at-Risk based on the normal inverse Gaussian distribution (Hereinafter NIG-DCS-VaR), which creatively incorporates intraday information into daily VaR forecast. NIG specifies an appropriate distribution to return and the semi-additivity of the NIG parameters makes it feasible to improve the estimation of daily return in light of intraday return, and thus the VaR can be explicitly obtained by calculating the quantile of the re-estimated distribution of daily return. We conducted an empirical analysis using two main indexes of the Chinese stock market, and a variety of backtesting approaches as well as the model confidence set approach prove that the VaR forecasts of NIG-DCS model generally gain an advantage over those of realized GARCH (RGARCH) models. Especially when the risk level is relatively high, NIG-DCS-VaR beats RGARCH-VaR in terms of coverage ability and independence.  相似文献   

10.
This paper demonstrates that existing quantile regression models used for jointly forecasting Value-at-Risk (VaR) and expected shortfall (ES) are sensitive to initial conditions. Given the importance of these measures in financial systems, this sensitivity is a critical issue. A new Bayesian quantile regression approach is proposed for estimating joint VaR and ES models. By treating the initial values as unknown parameters, sensitivity issues can be dealt with. Furthermore, new additive-type models are developed for the ES component that are more robust to initial conditions. A novel approach using the open-faced sandwich (OFS) method is proposed which improves uncertainty quantification in risk forecasts. Simulation and empirical results highlight the improvements in risk forecasts ensuing from the proposed methods.  相似文献   

11.
The effect of heavy tails due to rare events and different levels of asymmetry associated with high volatility clustering in the emerging financial markets requires sophisticated models for statistical modelling of such stylized facts. This article applies extreme value theory (EVT) to quantify tail risk on the daily returns of Mexican stock market under aggregation of foreign exchange rate risk from January 1971 to December 2010. This study focuses on the maximum-block method and generalized extreme value distribution (GEVD) to model the asymptotic behavior of extreme returns in US dollars. The empirical results show that EVT-Based VaR measured at high confidence levels performs better than simulation historical and delta-normal VaR models on capturing fat-tails in the returns of highly volatile stock markets. Additionally, international investors holding long positions in Mexican stock market are more prone to experience larger potential losses than investors with short positions during local currency depreciation and financial crisis periods.  相似文献   

12.
This paper studies seven GARCH models, including RiskMetrics and two long memory GARCH models, in Value at Risk (VaR) estimation. Both long and short positions of investment were considered. The seven models were applied to 12 market indices and four foreign exchange rates to assess each model in estimating VaR at various confidence levels. The results indicate that both stationary and fractionally integrated GARCH models outperform RiskMetrics in estimating 1% VaR. Although most return series show fat-tailed distribution and satisfy the long memory property, it is more important to consider a model with fat-tailed error in estimating VaR. Asymmetric behavior is also discovered in the stock market data that t-error models give better 1% VaR estimates than normal-error models in long position, but not in short position. No such asymmetry is observed in the exchange rate data.  相似文献   

13.
In this paper, we develop modeling tools to forecast Value-at-Risk and volatility with investment horizons of less than one day. We quantify the market risk based on the study at a 30-min time horizon using modified GARCH models. The evaluation of intraday market risk can be useful to market participants (day traders and market makers) involved in frequent trading. As expected, the volatility features a significant intraday seasonality, which motivates us to include the intraday seasonal indexes in the GARCH models. We also incorporate realized variance (RV) and time-varying degrees of freedom in the GARCH models to capture more intraday information on the volatile market. The intrinsic tail risk index is introduced to assist with understanding the inherent risk level in each trading time interval. The proposed models are evaluated based on their forecasting performance of one-period-ahead volatility and Intraday Value-at-Risk (IVaR) with application to the 30 constituent stocks. We find that models with seasonal indexes generally outperform those without; RV can improve the out-of-sample forecasts of IVaR; student GARCH models with time-varying degrees of freedom perform best at 0.5 and 1 % IVaR, while normal GARCH models excel for 2.5 and 5 % IVaR. The results show that RV and seasonal indexes are useful to forecasting intraday volatility and Intraday VaR.  相似文献   

14.
Current studies on financial market risk measures usually use daily returns based on GARCH type models. This paper models realized range using intraday high frequency data based on CARR framework and apply it to VaR forecasting. Kupiec LR test and dynamic quantile test are used to compare the performance of VaR forecasting of realized range model with another intraday realized volatility model and daily GARCH type models. Empirical results of Chinese Stock Indices show that realized range model performs the same with realized volatility model, which performs much better than daily models.  相似文献   

15.
林宇 《投资研究》2012,(1):41-56
本文在金融市场典型事实约束下,运用ARFIMA模型对金融市场条件收益率建模,运用GARCH、GJR、FIGARCH、APARCH、FIAPARCH等5种模型对金融波动率进行建模,进而运用极值理论(EVT)对标准收益的极端尾部风险建模来测度各股市的动态风险,并用返回测试(Back-testing)方法检验模型的适应性。实证结果表明,总的来说,FIAPARCH-EVT模型对各个市场具有较强的适应性,风险测度能力较为优越。进一步,本文在ARFIMA-FIAPARCH模型下,假定标准收益分别服从正态分布(N)、学生t分布(st)、有偏学生t分布(skst)、广义误差分布(GED)共4种分布,对各股市的动态风险测度的准确性进行检验,并和EVT方法的测度结果进行对比分析。结果表明,EVT方法风险测度能力优于其他方法,有偏学生t分布假设下的风险测度模型虽然略逊于EVT方法,但也不失为一种较好的方法;ARFIMA-FI-APARCH-EVT不仅在中国大陆沪深股市表现最为可靠,而且在其他市场也表现出同样的可靠性。  相似文献   

16.
The present study compares the performance of the long memory FIGARCH model, with that of the short memory GARCH specification, in the forecasting of multi-period value-at-risk (VaR) and expected shortfall (ES) across 20 stock indices worldwide. The dataset is composed of daily data covering the period from 1989 to 2009. The research addresses the question of whether or not accounting for long memory in the conditional variance specification improves the accuracy of the VaR and ES forecasts produced, particularly for longer time horizons. Accounting for fractional integration in the conditional variance model does not appear to improve the accuracy of the VaR forecasts for the 1-day-ahead, 10-day-ahead and 20-day-ahead forecasting horizons relative to the short memory GARCH specification. Additionally, the results suggest that underestimation of the true VaR figure becomes less prevalent as the forecasting horizon increases. Furthermore, the GARCH model has a lower quadratic loss between actual returns and ES forecasts, for the majority of the indices considered for the 10-day and 20-day forecasting horizons. Therefore, a long memory volatility model compared to a short memory GARCH model does not appear to improve the VaR and ES forecasting accuracy, even for longer forecasting horizons. Finally, the rolling-sampled estimated FIGARCH parameters change less smoothly over time compared to the GARCH models. Hence, the parameters' time-variant characteristic cannot be entirely due to the news information arrival process of the market; a portion must be due to the FIGARCH modelling process itself.  相似文献   

17.
In this paper we compare the out-of-sample performance of two common extensions of the Black–Scholes option pricing model, namely GARCH and stochastic volatility (SV). We calibrate the three models to intraday FTSE 100 option prices and apply two sets of performance criteria, namely out-of-sample valuation errors and Value-at-Risk (VaR) oriented measures. When we analyze the fit to observed prices, GARCH clearly dominates both SV and the benchmark Black–Scholes model. However, the predictions of the market risk from hypothetical derivative positions show sizable errors. The fit to the realized profits and losses is poor and there are no notable differences between the models. Overall, we therefore observe that the more complex option pricing models can improve on the Black–Scholes methodology only for the purpose of pricing, but not for the VaR forecasts.  相似文献   

18.
In this article, we elaborate some empirical stylized facts of eight emerging stock markets for estimating one-day- and one-week-ahead Value-at-Risk (VaR) in the case of both short- and long-trading positions. We model the emerging equity market returns via APARCH, FIGARCH, and FIAPARCH models under Student-t and skewed Student-t innovations. The FIAPARCH models under skewed Student-t distribution provide the best fit for all the equity market returns. Furthermore, we model the daily and one-week-ahead market risks with the conditional volatilities generated from the FIAPARCH models and document that the skewed Student-t distribution yields the best results in predicting one-day-ahead VaR forecasts for all the stock markets. The results also reveal that the prediction power of the models deteriorate for longer forecasting horizons.  相似文献   

19.
基于实现极差和实现波动率的中国金融市场风险测度研究   总被引:8,自引:0,他引:8  
目前比较流行的金融市场风险价值研究一般采用日收益数据,并基于GARCH类模型进行估计和预测。本文利用沪深股指日内高频数据,分别通过ARFIMA模型和CARR模型对实现波动率和较新的实现极差建模,计算风险价值。通过对VaR的似然比和动态分位数等回测检验,实证分析了各种模型的VaR预测能力。结果显示,使用日内高频数据的实现波动率和实现极差模型的预测能力强于采用日数据的各种GARCH类模型。  相似文献   

20.
Conditional VaR using EVT - Towards a planned margin scheme   总被引:2,自引:0,他引:2  
This paper constructs a robust Value-at-Risk (VaR) measure for the Indian stock markets by combining two well-known facts about equity return time series — dynamic volatility resulting in the well-recognized phenomenon of volatility clustering, and non-normality giving rise to fat tails of the return distribution. While the phenomenon of volatility dynamics has been extensively studied using GARCH model and its many relatives, the application of Extreme Value Theory (EVT) is relatively recent in tracking extreme losses in the study of risk measurement. There are recent applications of Extreme Value Theory to estimate the unexpected losses due to extreme events and hence modify the current methodology of VaR. Extreme value theory (EVT) has been used to analyze financial data showing clear non-normal behavior. We combine the two methodologies to come up with a robust model with much enhanced predictive abilities. A robust model would obviate the need for imposing special ad hoc margins by the regulator in times of extreme volatility. A rule based margin system would increase efficiency of the price discovery process and also the market integrity with the regulator no longer seen as managing volatility.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号