首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We investigate the time series properties of a volatility model, whose conditional variance is specified as in ARCH with an additional persistent covariate. The included covariate is assumed to be an integrated or nearly integrated process, with its effect on volatility given by a wide class of nonlinear volatility functions. In the paper, such a model is shown to generate many important characteristics that are commonly observed in financial time series. In particular, the model yields persistence in volatility, and also well predicts leptokurtosis. This is true for any type of volatility functions considered in the paper, as long as the covariate is integrated or nearly integrated. Stationary covariates cannot produce important characteristics observed in many financial time series. We present two empirical applications of the model, which show that the default premium (the yield spread between Baa and Aaa corporate bonds) affects stock return volatility and the interest rate differential between two countries accounts for exchange rate return volatility. The forecast evaluation shows that the model generally outperforms GARCH and FIGARCH at relatively lower frequencies.  相似文献   

2.
In this paper, we present an estimation procedure which uses both option prices and high-frequency spot price feeds to estimate jointly the objective and risk-neutral parameters of stochastic volatility models. The procedure is based on a method of moments that uses analytical expressions for the moments of the integrated volatility and series expansions of option prices and implied volatilities. This results in an easily implementable and rapid estimation technique. An extensive Monte Carlo study compares various procedures and shows the efficiency of our approach. Empirical applications to the Deutsche mark–US dollar exchange rate futures and the S&P 500 index provide evidence that the method delivers results that are in line with the ones obtained in previous studies where much more involved estimation procedures were used.  相似文献   

3.
This paper develops a dynamic approximate factor model in which returns are time-series heteroskedastic. The heteroskedasticity has three components: a factor-related component, a common asset-specific component, and a purely asset-specific component. We develop a new multivariate GARCH model for the factor-related component. We develop a univariate stochastic volatility model linked to a cross-sectional series of individual GARCH models for the common asset-specific component and the purely asset-specific component. We apply the analysis to monthly US equity returns for the period January 1926 to December 2000. We find that all three components contribute to the heteroskedasticity of individual equity returns. Factor volatility and the common component in asset-specific volatility have long-term secular trends as well as short-term autocorrelation. Factor volatility has correlation with interest rates and the business cycle.  相似文献   

4.
This paper proposes a method for constructing a volatility risk premium, or investor risk aversion, index. The method is intuitive and simple to implement, relying on the sample moments of the recently popularized model-free realized and option-implied volatility measures. A small-scale Monte Carlo experiment confirms that the procedure works well in practice. Implementing the procedure with actual S&P500 option-implied volatilities and high-frequency five-minute-based realized volatilities indicates significant temporal dependencies in the estimated stochastic volatility risk premium, which we in turn relate to a set of macro-finance state variables. We also find that the extracted volatility risk premium helps predict future stock market returns.  相似文献   

5.
We develop an efficient and analytically tractable method for estimation of parametric volatility models that is robust to price-level jumps. The method entails first integrating intra-day data into the Realized Laplace Transform of volatility, which is a model-free estimate of the daily integrated empirical Laplace transform of the unobservable volatility. The estimation is then done by matching moments of the integrated joint Laplace transform with those implied by the parametric volatility model. In the empirical application, the best fitting volatility model is a non-diffusive two-factor model where low activity jumps drive its persistent component and more active jumps drive the transient one.  相似文献   

6.
Continuous-time stochastic volatility models are becoming an increasingly popular way to describe moderate and high-frequency financial data. Barndorff-Nielsen and Shephard (2001a) proposed a class of models where the volatility behaves according to an Ornstein–Uhlenbeck (OU) process, driven by a positive Lévy process without Gaussian component. These models introduce discontinuities, or jumps, into the volatility process. They also consider superpositions of such processes and we extend that to the inclusion of a jump component in the returns. In addition, we allow for leverage effects and we introduce separate risk pricing for the volatility components. We design and implement practically relevant inference methods for such models, within the Bayesian paradigm. The algorithm is based on Markov chain Monte Carlo (MCMC) methods and we use a series representation of Lévy processes. MCMC methods for such models are complicated by the fact that parameter changes will often induce a change in the distribution of the representation of the process and the associated problem of overconditioning. We avoid this problem by dependent thinning methods. An application to stock price data shows the models perform very well, even in the face of data with rapid changes, especially if a superposition of processes with different risk premiums and a leverage effect is used.  相似文献   

7.
This paper extends the jump detection method based on bipower variation to identify realized jumps on financial markets and to estimate parametrically the jump intensity, mean, and variance. Finite sample evidence suggests that the jump parameters can be accurately estimated and that the statistical inferences are reliable under the assumption that jumps are rare and large. Applications to equity market, treasury bond, and exchange rate data reveal important differences in jump frequencies and volatilities across asset classes over time. For investment grade bond spread indices, the estimated jump volatility has more forecasting power than interest rate factors and volatility factors including option-implied volatility, with control for systematic risk factors. The jump volatility risk factor seems to capture the low frequency movements in credit spreads and comoves countercyclically with the price–dividend ratio and corporate default rate.  相似文献   

8.
This paper introduces and studies the econometric properties of a general new class of models, which I refer to as jump-driven stochastic volatility models, in which the volatility is a moving average of past jumps. I focus attention on two particular semiparametric classes of jump-driven stochastic volatility models. In the first, the price has a continuous component with time-varying volatility and time-homogeneous jumps. The second jump-driven stochastic volatility model analyzed here has only jumps in the price, which have time-varying size. In the empirical application I model the memory of the stochastic variance with a CARMA(2,1) kernel and set the jumps in the variance to be proportional to the squared price jumps. The estimation, which is based on matching moments of certain realized power variation statistics calculated from high-frequency foreign exchange data, shows that the jump-driven stochastic volatility model containing continuous component in the price performs best. It outperforms a standard two-factor affine jump–diffusion model, but also the pure-jump jump-driven stochastic volatility model for the particular jump specification.  相似文献   

9.
There is strong empirical evidence that long-term interest rates contain a time-varying risk premium. Options may contain valuable information about this risk premium because their prices are sensitive to the underlying interest rates. We use the joint time series of swap rates and interest rate option prices to estimate dynamic term structure models. The risk premiums that we estimate using option prices are better able to predict excess returns for long-term swaps over short-term swaps. Moreover, in contrast to the previous literature, the most successful models for predicting excess returns have risk factors with stochastic volatility. We also show that the stochastic volatility models we estimate using option prices match the failure of the expectations hypothesis.  相似文献   

10.
Single‐state generalized autoregressive conditional heteroscedasticity (GARCH) models identify only one mechanism governing the response of volatility to market shocks, and the conditional higher moments are constant, unless modelled explicitly. So they neither capture state‐dependent behaviour of volatility nor explain why the equity index skew persists into long‐dated options. Markov switching (MS) GARCH models specify several volatility states with endogenous conditional skewness and kurtosis; of these the simplest to estimate is normal mixture (NM) GARCH, which has constant state probabilities. We introduce a state‐dependent leverage effect to NM‐GARCH and thereby explain the observed characteristics of equity index returns and implied volatility skews, without resorting to time‐varying volatility risk premia. An empirical study on European equity indices identifies two‐state asymmetric NM‐GARCH as the best fit of the 15 models considered. During stable markets volatility behaviour is broadly similar across all indices, but the crash probability and the behaviour of returns and volatility during a crash depends on the index. The volatility mean‐reversion and leverage effects during crash markets are quite different from those in the stable regime.  相似文献   

11.
We extend the analytical results for reduced form realized volatility based forecasting in ABM (2004) to allow for market microstructure frictions in the observed high-frequency returns. Our results build on the eigenfunction representation of the general stochastic volatility class of models developed byMeddahi (2001). In addition to traditional realized volatility measures and the role of the underlying sampling frequencies, we also explore the forecasting performance of several alternative volatility measures designed to mitigate the impact of the microstructure noise. Our analysis is facilitated by a simple unified quadratic form representation for all these estimators. Our results suggest that the detrimental impact of the noise on forecast accuracy can be substantial. Moreover, the linear forecasts based on a simple-to-implement ‘average’ (or ‘subsampled’) estimator obtained by averaging standard sparsely sampled realized volatility measures generally perform on par with the best alternative robust measures.  相似文献   

12.
We introduce a functional volatility process for modeling volatility trajectories for high frequency observations in financial markets and describe functional representations and data-based recovery of the process from repeated observations. A study of its asymptotic properties, as the frequency of observed trades increases, is complemented by simulations and an application to the analysis of intra-day volatility patterns of the S&P 500 index. The proposed volatility model is found to be useful to identify recurring patterns of volatility and for successful prediction of future volatility, through the application of functional regression and prediction techniques.  相似文献   

13.
This paper develops two tests for parametric volatility function of a diffusion model based on Khmaladze (1981)’s martingale transformation. The tests impose no restrictions on the functional form of the drift function and are shown to be asymptotically distribution-free. The tests are consistent against a large class of fixed alternatives and have nontrivial power against a class of root-nn local alternatives. The paper also extends the tests of volatility to testing for joint specifications of drift and volatility. Monte Carlo simulations show that the tests perform well in finite samples. The proposed tests are then applied to testing models of short-term interest, using data of Treasury bill rate and Eurodollar deposit rate. The empirical results show that the commonly used CKLS volatility function of Chan et al. (1992) fits volatility function poorly and none of the parametric interest rate models considered in the paper fit data well.  相似文献   

14.
We study the forecasting of future realized volatility in the foreign exchange, stock, and bond markets from variables in our information set, including implied volatility backed out from option prices. Realized volatility is separated into its continuous and jump components, and the heterogeneous autoregressive (HAR) model is applied with implied volatility as an additional forecasting variable. A vector HAR (VecHAR) model for the resulting simultaneous system is introduced, controlling for possible endogeneity issues. We find that implied volatility contains incremental information about future volatility in all three markets, relative to past continuous and jump components, and it is an unbiased forecast in the foreign exchange and stock markets. Out-of-sample forecasting experiments confirm that implied volatility is important in forecasting future realized volatility components in all three markets. Perhaps surprisingly, the jump component is, to some extent, predictable, and options appear calibrated to incorporate information about future jumps in all three markets.  相似文献   

15.
This study reconsiders the role of jumps for volatility forecasting by showing that jumps have a positive and mostly significant impact on future volatility. This result becomes apparent once volatility is separated into its continuous and discontinuous components using estimators which are not only consistent, but also scarcely plagued by small sample bias. With the aim of achieving this, we introduce the concept of threshold bipower variation, which is based on the joint use of bipower variation and threshold estimation. We show that its generalization (threshold multipower variation) admits a feasible central limit theorem in the presence of jumps and provides less biased estimates, with respect to the standard multipower variation, of the continuous quadratic variation in finite samples. We further provide a new test for jump detection which has substantially more power than tests based on multipower variation. Empirical analysis (on the S&P500 index, individual stocks and US bond yields) shows that the proposed techniques improve significantly the accuracy of volatility forecasts especially in periods following the occurrence of a jump.  相似文献   

16.
The ranking of multivariate volatility models is inherently problematic because when the unobservable volatility is substituted by a proxy, the ordering implied by a loss function may be biased with respect to the intended one. We point out that the size of the distortion is strictly tied to the level of the accuracy of the volatility proxy. We propose a generalized necessary and sufficient functional form for a class of non-metric distance measures of the Bregman type which ensure consistency of the ordering when the target is observed with noise. An application to three foreign exchange rates is provided.  相似文献   

17.
Following Hamilton [1989. A new approach to the economic analysis of nonstationary time series and the business cycle. Econometrica 57, 357–384], estimation of Markov regime-switching regressions typically relies on the assumption that the latent state variable controlling regime change is exogenous. We relax this assumption and develop a parsimonious model of endogenous Markov regime-switching. Inference via maximum likelihood estimation is possible with relatively minor modifications to existing recursive filters. The model nests the exogenous switching model, yielding straightforward tests for endogeneity. In Monte Carlo experiments, maximum likelihood estimates of the endogenous switching model parameters were quite accurate, even in the presence of certain model misspecifications. As an application, we extend the volatility feedback model of equity returns given in Turner et al. [1989. A Markov model of heteroskedasticity, risk, and learning in the stock market. Journal of Financial Economics 25, 3–22] to allow for endogenous switching.  相似文献   

18.
A growing literature advocates the use of microstructure noise-contaminated high-frequency data for the purpose of volatility estimation. This paper evaluates and compares the quality of several recently-proposed estimators in the context of a relevant economic metric, i.e., profits from option pricing and trading. Using forecasts obtained by virtue of alternative volatility estimates, agents price short-term options on the S&P 500 index before trading with each other at average prices. The agents’ average profits and the Sharpe ratios of the profits constitute the criteria used to evaluate alternative volatility estimates and the corresponding forecasts. For our data, we find that estimators with superior finite sample Mean-squared-error properties generate higher average profits and higher Sharpe ratios, in general. We confirm that, even from a forecasting standpoint, there is scope for optimizing the finite sample properties of alternative volatility estimators as advocated by Bandi and Russell [Bandi, F.M., Russell, J.R., 2005. Market microstructure noise, integrated variance estimators, and the accuracy of asymptotic approximations. Working Paper; Bandi, F.M., Russell, J.R., 2008b. Microstructure noise, realized variance, and optimal sampling. Review of Economic Studies 75, 339–369] in recent work.  相似文献   

19.
It is commonly accepted that some financial data may exhibit long-range dependence, while other financial data exhibit intermediate-range dependence or short-range dependence. These behaviours may be fitted to a continuous-time fractional stochastic model. The estimation procedure proposed in this paper is based on a continuous-time version of the Gauss–Whittle objective function to find the parameter estimates that minimize the discrepancy between the spectral density and the data periodogram. As a special case, the proposed estimation procedure is applied to a class of fractional stochastic volatility models to estimate the drift, standard deviation and memory parameters of the volatility process under consideration. As an application, the volatility of the Dow Jones, S&P 500, CAC 40, DAX 30, FTSE 100 and NIKKEI 225 is estimated.  相似文献   

20.
Bayesian hypothesis testing in latent variable models   总被引:1,自引:0,他引:1  
Hypothesis testing using Bayes factors (BFs) is known not to be well defined under the improper prior. In the context of latent variable models, an additional problem with BFs is that they are difficult to compute. In this paper, a new Bayesian method, based on the decision theory and the EM algorithm, is introduced to test a point hypothesis in latent variable models. The new statistic is a by-product of the Bayesian MCMC output and, hence, easy to compute. It is shown that the new statistic is appropriately defined under improper priors because the method employs a continuous loss function. In addition, it is easy to interpret. The method is illustrated using a one-factor asset pricing model and a stochastic volatility model with jumps.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号