首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
A price process is scale-invariant if and only if the returns distribution is independent of the price measurement scale. We show that most stochastic processes used for pricing options on financial assets have this property and that many models not previously recognised as scale-invariant are indeed so. We also prove that price hedge ratios for a wide class of contingent claims under a wide class of pricing models are model-free. In particular, previous results on model-free price hedge ratios of vanilla options based on scale-invariant models are extended to any contingent claim with homogeneous pay-off, including complex, path-dependent options. However, model-free hedge ratios only have the minimum variance property in scale-invariant stochastic volatility models when price–volatility correlation is zero. In other stochastic volatility models and in scale-invariant local volatility models, model-free hedge ratios are not minimum variance ratios and our empirical results demonstrate that they are less efficient than minimum variance hedge ratios.  相似文献   

2.
Today, better numerical approximations are required for multi-dimensional SDEs to improve on the poor performance of the standard Monte Carlo pricing method. With this aim in mind, this paper presents a method (MSL-MC) to price exotic options using multi-dimensional SDEs (e.g. stochastic volatility models). Usually, it is the weak convergence property of numerical discretizations that is most important, because, in financial applications, one is mostly concerned with the accurate estimation of expected payoffs. However, in the recently developed Multilevel Monte Carlo path simulation method (ML-MC), the strong convergence property plays a crucial role. We present a modification to the ML-MC algorithm that can be used to achieve better savings. To illustrate these, various examples of exotic options are given using a wide variety of payoffs, stochastic volatility models and the new Multischeme Multilevel Monte Carlo method (MSL-MC). For standard payoffs, both European and Digital options are presented. Examples are also given for complex payoffs, such as combinations of European options (Butterfly Spread, Strip and Strap options). Finally, for path-dependent payoffs, both Asian and Variance Swap options are demonstrated. This research shows how the use of stochastic volatility models and the θ scheme can improve the convergence of the MSL-MC so that the computational cost to achieve an accuracy of O(ε) is reduced from O?3) to O?2) for a payoff under global and non-global Lipschitz conditions.  相似文献   

3.
We present a number of related comparison results, which allow one to compare moment explosion times, moment generating functions and critical moments between rough and non-rough Heston models of stochastic volatility. All results are based on a comparison principle for certain non-linear Volterra integral equations. Our upper bound for the moment explosion time is different from the bound introduced by Gerhold, Gerstenecker and Pinter [Moment explosions in the rough Heston model. Decisions in Economics and Finance, 2019, 42, 575–608] and tighter for typical parameter values. The results can be directly transferred to a comparison principle for the asymptotic slope of implied variance between rough and non-rough Heston models. This principle shows that the ratio of implied variance slopes in the rough versus non-rough Heston model increases at least with power-law behavior for small maturities.  相似文献   

4.
Numerical integration methods for stochastic volatility models in financial markets are discussed. We concentrate on two classes of stochastic volatility models where the volatility is either directly given by a mean-reverting CEV process or as a transformed Ornstein–Uhlenbeck process. For the latter, we introduce a new model based on a simple hyperbolic transformation. Various numerical methods for integrating mean-reverting CEV processes are analysed and compared with respect to positivity preservation and efficiency. Moreover, we develop a simple and robust integration scheme for the two-dimensional system using the strong convergence behaviour as an indicator for the approximation quality. This method, which we refer to as the IJK (137) scheme, is applicable to all types of stochastic volatility models and can be employed as a drop-in replacement for the standard log-Euler procedure.  相似文献   

5.
Most term structure models assume bond markets are complete, that is, that all fixed income derivatives can be perfectly replicated using solely bonds. How ever, we find that, in practice, swap rates have limited explanatory power for returns on at–the–money straddles—portfolios mainly exposed to volatility risk. We term this empirical feature "unspanned stochastic volatility" (USV). While USV can be captured within an HJM framework, we demonstrate that bivariate models cannot exhibit USV. We determine necessary and sufficient conditions for trivariate Markov affine systems to exhibit USV. For such USV models, bonds alone may not be sufficient to identify all parameters. Rather, derivatives are needed.  相似文献   

6.
We consider an infinite time horizon optimal investment problem where an investor tries to maximize the probability of beating a given index. From a mathematical viewpoint, this is a large deviation probability control problem. As shown by Pham (in Syst. Control Lett. 49: 295–309, 2003; Financ. Stoch. 7: 169–195, 2003), its dual problem can be regarded as an ergodic risk-sensitive stochastic control problem. We discuss the partial information counterpart of Pham (in Syst. Control Lett. 49: 295–309, 2003; Financ. Stoch. 7: 169–195, 2003). The optimal strategy and the value function for the dual problem are constructed by using the solution of an algebraic Riccati equation. This equation is the limit equation of a time inhomogeneous Riccati equation derived from a finite time horizon problem with partial information. As a result, we obtain explicit representations of the value function and the optimal strategy for the problem. Furthermore we compare the optimal strategies and the value functions in both full and partial information cases.

Electronic Supplementary Material Supplementary material is available for this article at   相似文献   

7.
This paper studies the continuous-time dynamics of VIX with stochastic volatility and jumps in VIX and volatility. Built on the general parametric affine model with stochastic volatility and jumps in the logarithm of VIX, we derive a linear relationship between the stochastic volatility factor and the VVIX index. We detect the existence of a co-jump of VIX and VVIX and put forward a double-jump stochastic volatility model for VIX through its joint property with VVIX. Using the VVIX index as a proxy for stochastic volatility, we use the MCMC method to estimate the dynamics of VIX. Comparing nested models of VIX, we show that the jump in VIX and the volatility factor are statistically significant. The jump intensity is also stochastic. We analyse the impact of the jump factor on VIX dynamics.  相似文献   

8.
In this paper we discuss a new approach to extend a class of solvable stochastic volatility models (SVM). Usually, classical SVM adopt a CEV process for instantaneous variance where the CEV parameter γ takes just few values: 0—the Ornstein–Uhlenbeck process, 1/2—the Heston (or square root) process, 1—GARCH, and 3/2—the 3/2 model. Some other models, e.g. with γ = 2 were discovered in Henry-Labordére (Analysis, geometry, and modeling in finance: advanced methods in option pricing. Chapman & Hall/CRC Financial Mathematics Series, London, 2009) by making connection between stochastic volatility and solvable diffusion processes in quantum mechanics. In particular, he used to build a bridge between solvable superpotentials (the Natanzon superpotentials, which allow reduction of a Schrödinger equation to a Gauss confluent hypergeometric equation) and existing SVM. Here we propose some new models with ${\gamma \in \mathbb{R}}$ and demonstrate that using Lie’s symmetries they could be priced in closed form in terms of hypergeometric functions. Thus obtained new models could be useful for pricing volatility derivatives (variance and volatility swaps, moment swaps).  相似文献   

9.
This paper investigates the role of stochastic volatility and return jumps in reproducing the volatility dynamics and the shape characteristics of the Korean Composite Stock Price Index (KOSPI) 200 returns distribution. Using efficient method of moments and reprojection analysis, we find that stochastic volatility models, both with and without return jumps, capture return dynamics surprisingly well. The stochastic volatility model without return jumps, however, cannot fully reproduce the conditional kurtosis implied by the data. Return jumps successfully complement this gap. We also find that return jumps are essential in capturing the volatility smirk effects observed in short-term options.
Sol KimEmail:
  相似文献   

10.
Abstract

This paper derives a class of efficient factor models that bridge a gap between factor models and Heath-Jarrow-Morton models. These efficient factor models provide arbitrage-free dynamics for the yield curve, can be readily extended to fit the current yield curve, and have closed-form formulas for pricing default-free zero-coupon bonds. The short rate is a state variable in these efficient factor models. There are no restrictions imposed on the functional form of the volatility of the short rate except for certain technical conditions to ensure the solvability of the associated stochastic differential equations. The stochastic volatility of the short rate can be one of the state variables. The paper also presents a closed-form solution for default-free discount bond prices in the Malkiel model and provides a new method to derive the Ritchken-Sankarasubramanian model.  相似文献   

11.
The implied volatility skew has received relatively little attention in the literature on short-term asymptotics for financial models with jumps, despite its importance in model selection and calibration. We rectify this by providing high order asymptotic expansions for the at-the-money implied volatility skew, under a rich class of stochastic volatility models with independent stable-like jumps of infinite variation. The case of a pure-jump stable-like Lévy model is also considered under the minimal possible conditions for the resulting expansion to be well defined. Unlike recent results for “near-the-money” option prices and implied volatility, the results herein aid in understanding how the implied volatility smile near expiry is affected by important features of the continuous component, such as the leverage and vol-of-vol parameters. As intermediary results, we obtain high order expansions for at-the-money digital call option prices, which furthermore allow us to infer analogous results for the delta of at-the-money options. Simulation results indicate that our asymptotic expansions give good fits for options with maturities up to one month, underpinning their relevance in practical applications, and an analysis of the implied volatility skew in recent S&P 500 options data shows it to be consistent with the infinite variation jump component of our models.  相似文献   

12.
GARCH models of volatility are ubiquitous. Over the past twelve years, the GARCH industry has produced an almost infinite number of volatility time series from an extremely wide range of return series. The main purpose of this paper is to revisit the notion of volatility. Although we stop just short of questioning the necessity (and certainly the success) of GARCH, we demonstrate that for at least one type of data—long term interest rates—it is possible to essentially reproduce GARCH volatility time series with simple moving averages of deviations from mean return. We also demonstrate (empirically) a functional relationship between GARCH(1,1) parameters and the optimal moving average window width. At the present time these results are based on the utilisation of GARCH volatility as a benchmark against which we select the optimal number of terms in the simple moving average representation. One possible avenue of research that might lead to the removal of this requirement is suggested. An interesting applied result that emerged from our analysis is this: from 1952 to the present, USA interest rate volatility has the highest overall cross-correlation with the interest rate volatilities of other countries.  相似文献   

13.
Arbitrage-free market models for option prices: the multi-strike case   总被引:1,自引:1,他引:0  
This paper studies modeling and existence issues for market models of option prices in a continuous-time framework with one stock, one bond and a family of European call options for one fixed maturity and all strikes. After arguing that (classical) implied volatilities are ill-suited for constructing such models, we introduce the new concepts of local implied volatilities and price level. We show that these new quantities provide a natural and simple parametrization of all option price models satisfying the natural static arbitrage bounds across strikes. We next characterize absence of dynamic arbitrage for such models in terms of drift restrictions on the model coefficients. For the resulting infinite system of SDEs for the price level and all local implied volatilities, we then study the question of solvability and provide sufficient conditions for existence and uniqueness of a solution. We give explicit examples of volatility coefficients satisfying the required assumptions, and hence of arbitrage-free multi-strike market models of option prices.   相似文献   

14.
Stochastic volatility and stochastic leverage   总被引:1,自引:0,他引:1  
This paper proposes the new concept of stochastic leverage in stochastic volatility models. Stochastic leverage refers to a stochastic process which replaces the classical constant correlation parameter between the asset return and the stochastic volatility process. We provide a systematic treatment of stochastic leverage and propose to model the stochastic leverage effect explicitly, e.g. by means of a linear transformation of a Jacobi process. Such models are both analytically tractable and allow for a direct economic interpretation. In particular, we propose two new stochastic volatility models which allow for a stochastic leverage effect: the generalised Heston model and the generalised Barndorff-Nielsen & Shephard model. We investigate the impact of a stochastic leverage effect in the risk neutral world by focusing on implied volatilities generated by option prices derived from our new models. Furthermore, we give a detailed account on statistical properties of the new models.  相似文献   

15.
This paper proposes an asymptotic expansion scheme of currency options with a libor market model of interest rates and stochastic volatility models of spot exchange rates. In particular, we derive closed-form approximation formulas for the density functions of the underlying assets and for pricing currency options based on a third order asymptotic expansion scheme; we do not model a foreign exchange rate’s variance such as in Heston [(1993) The Review of Financial studies, 6, 327–343], but its volatility that follows a general time-inhomogeneous Markovian process. Further, the correlations among all the factors such as domestic and foreign interest rates, a spot foreign exchange rate and its volatility, are allowed. Finally, numerical examples are provided and the pricing formula are applied to the calibration of volatility surfaces in the JPY/USD option market.  相似文献   

16.
The rough Bergomi model, introduced by Bayer et al. [Quant. Finance, 2016, 16(6), 887–904], is one of the recent rough volatility models that are consistent with the stylised fact of implied volatility surfaces being essentially time-invariant, and are able to capture the term structure of skew observed in equity markets. In the absence of analytical European option pricing methods for the model, we focus on reducing the runtime-adjusted variance of Monte Carlo implied volatilities, thereby contributing to the model’s calibration by simulation. We employ a novel composition of variance reduction methods, immediately applicable to any conditionally log-normal stochastic volatility model. Assuming one targets implied volatility estimates with a given degree of confidence, thus calibration RMSE, the results we demonstrate equate to significant runtime reductions—roughly 20 times on average, across different correlation regimes.  相似文献   

17.
In this paper we generalize the recent comparison results of El Karoui et al. (Math Finance 8:93–126, 1998), Bellamy and Jeanblanc (Finance Stoch 4:209–222, 2000) and Gushchin and Mordecki (Proc Steklov Inst Math 237:73–113, 2002) to d-dimensional exponential semimartingales. Our main result gives sufficient conditions for the comparison of European options with respect to martingale pricing measures. The comparison is with respect to convex and also with respect to directionally convex functions. Sufficient conditions for these orderings are formulated in terms of the predictable characteristics of the stochastic logarithm of the stock price processes. As examples we discuss the comparison of exponential semimartingales to multivariate diffusion processes, to stochastic volatility models, to Lévy processes, and to diffusions with jumps. We obtain extensions of several recent results on nontrivial price intervals. A crucial property in this approach is the propagation of convexity property. We develop a new approach to establish this property for several further examples of univariate and multivariate processes.  相似文献   

18.
《Quantitative Finance》2013,13(4):257-263
Abstract

We study the problem of reconstruction of the asset price dependent local volatility from market prices of options with different strikes. For a general diffusion process we apply the linearization technique and we conclude that the option price can be obtained as the sum of the Black-Scholes formula and of an explicit functional which is linear in perturbation of volatility. We obtain an integral equation for this functional and we show that under some natural conditions it can be inverted for volatility. We demonstrate the stability of the linearized problem, and we propose a numerical algorithm which is accurate for volatility functions with different properties.  相似文献   

19.
We develop a new approach for pricing European-style contingent claims written on the time T spot price of an underlying asset whose volatility is stochastic. Like most of the stochastic volatility literature, we assume continuous dynamics for the price of the underlying asset. In contrast to most of the stochastic volatility literature, we do not directly model the dynamics of the instantaneous volatility. Instead, taking advantage of the recent rise of the variance swap market, we directly assume continuous dynamics for the time T variance swap rate. The initial value of this variance swap rate can either be directly observed, or inferred from option prices. We make no assumption concerning the real world drift of this process. We assume that the ratio of the volatility of the variance swap rate to the instantaneous volatility of the underlying asset just depends on the variance swap rate and on the variance swap maturity. Since this ratio is assumed to be independent of calendar time, we term this key assumption the stationary volatility ratio hypothesis (SVRH). The instantaneous volatility of the futures follows an unspecified stochastic process, so both the underlying futures price and the variance swap rate have unspecified stochastic volatility. Despite this, we show that the payoff to a path-independent contingent claim can be perfectly replicated by dynamic trading in futures contracts and variance swaps of the same maturity. As a result, the contingent claim is uniquely valued relative to its underlying’s futures price and the assumed observable variance swap rate. In contrast to standard models of stochastic volatility, our approach does not require specifying the market price of volatility risk or observing the initial level of instantaneous volatility. As a consequence of our SVRH, the partial differential equation (PDE) governing the arbitrage-free value of the contingent claim just depends on two state variables rather than the usual three. We then focus on the consistency of our SVRH with the standard assumption that the risk-neutral process for the instantaneous variance is a diffusion whose coefficients are independent of the variance swap maturity. We show that the combination of this maturity independent diffusion hypothesis (MIDH) and our SVRH implies a very special form of the risk-neutral diffusion process for the instantaneous variance. Fortunately, this process is tractable, well-behaved, and enjoys empirical support. Finally, we show that our model can also be used to robustly price and hedge volatility derivatives.  相似文献   

20.
Abstract

A Monte Carlo (MC) experiment is conducted to study the forecasting performance of a variety of volatility models under alternative data-generating processes (DGPs). The models included in the MC study are the (Fractionally Integrated) Generalized Autoregressive Conditional Heteroskedasticity models ((FI)GARCH), the Stochastic Volatility model (SV), the Long Memory Stochastic Volatility model (LMSV) and the Markov-switching Multifractal model (MSM). The MC study enables us to compare the relative forecasting performance of the models accounting for different characterizations of the latent volatility process: specifications that incorporate short/long memory, autoregressive components, stochastic shocks, Markov-switching and multifractality. Forecasts are evaluated by means of mean squared errors (MSE), mean absolute errors (MAE) and value-at-risk (VaR) diagnostics. Furthermore, complementarities between models are explored via forecast combinations. The results show that (i) the MSM model best forecasts volatility under any other alternative characterization of the latent volatility process and (ii) forecast combinations provide systematic improvements upon most single misspecified models, but are typically inferior to the MSM model even if the latter is applied to data governed by other processes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号