共查询到20条相似文献,搜索用时 0 毫秒
1.
Explicit asymptotic bias formulae are given for dynamic panel regression estimators as the cross section sample size N→∞. The results extend earlier work by Nickell [1981. Biases in dynamic models with fixed effects. Econometrica 49, 1417–1426] and later authors in several directions that are relevant for practical work, including models with unit roots, deterministic trends, predetermined and exogenous regressors, and errors that may be cross sectionally dependent. The asymptotic bias is found to be so large when incidental linear trends are fitted and the time series sample size is small that it changes the sign of the autoregressive coefficient. Another finding of interest is that, when there is cross section error dependence, the probability limit of the dynamic panel regression estimator is a random variable rather than a constant, which helps to explain the substantial variability observed in dynamic panel estimates when there is cross section dependence even in situations where N is very large. Some proposals for bias correction are suggested and finite sample performance is analyzed in simulations. 相似文献
2.
Dukpa Kim 《Journal of econometrics》2011,164(2):310-330
This paper develops an estimation procedure for a common deterministic time trend break in large panels. The dependent variable in each equation consists of a deterministic trend and an error term. The deterministic trend is subject to a change in the intercept, slope or both, and the break date is common for all equations. The estimation method is simply minimizing the sum of squared residuals for all possible break dates. Both serial and cross sectional correlations are important factors that decide the rate of convergence and the limiting distribution of the break date estimate. The rate of convergence is faster when the errors are stationary than when they have a unit root. When there is no cross sectional dependence among the errors, the rate of convergence depends on the number of equations and thus is faster than the univariate case. When the errors have a common factor structure with factor loadings correlated with the intercept and slope change parameters, the rate of convergence does not depend on the number of equations and thus reduces to the univariate case. The limiting distribution of the break date estimate is also provided. Some Monte Carlo experiments are performed to assess the adequacy of the asymptotic results. A brief empirical example using the US GDP price index is offered. 相似文献
3.
In this paper we derive an asymptotic theory for linear panel regression augmented with estimated common factors. We give conditions under which the estimated factors can be used in place of the latent factors in the regression equation. For the principal components estimate of the factor space it is shown that these conditions are satisfied when T/N→0 and N/T3→0 under regularity. Monte Carlo studies verify the asymptotic theory. 相似文献
4.
Maximum likelihood (ML) estimation of the autoregressive parameter of a dynamic panel data model with fixed effects is inconsistent under fixed time series sample size and large cross section sample size asymptotics. This paper proposes a general, computationally inexpensive method of bias reduction that is based on indirect inference, shows unbiasedness and analyzes efficiency. Monte Carlo studies show that our procedure achieves substantial bias reductions with only mild increases in variance, thereby substantially reducing root mean square errors. The method is compared with certain consistent estimators and is shown to have superior finite sample properties to the generalized method of moment (GMM) and the bias-corrected ML estimator. 相似文献
5.
Chi‐Young Choi
Nelson C. Mark Donggyu Sul 《Oxford bulletin of economics and statistics》2010,72(5):567-599
The within‐group estimator (same as the least squares dummy variable estimator) of the dominant root in dynamic panel regression is known to be biased downwards. This article studies recursive mean adjustment (RMA) as a strategy to reduce this bias for AR(p) processes that may exhibit cross‐sectional dependence. Asymptotic properties for N,T→∞ jointly are developed. When ( log 2T)(N/T)→ζ, where ζ is a non‐zero constant, the estimator exhibits nearly negligible inconsistency. Simulation experiments demonstrate that the RMA estimator performs well in terms of reducing bias, variance and mean square error both when error terms are cross‐sectionally independent and when they are not. RMA dominates comparable estimators when T is small and/or when the underlying process is persistent. 相似文献
6.
Factors estimated from large macroeconomic panels are being used in an increasing number of applications. However, little is known about how the size and the composition of the data affect the factor estimates. In this paper, we question whether it is possible to use more series to extract the factors, and yet the resulting factors are less useful for forecasting, and the answer is yes. Such a problem tends to arise when the idiosyncratic errors are cross-correlated. It can also arise if forecasting power is provided by a factor that is dominant in a small dataset but is a dominated factor in a larger dataset. In a real time forecasting exercise, we find that factors extracted from as few as 40 pre-screened series often yield satisfactory or even better results than using all 147 series. Weighting the data by their properties when constructing the factors also lead to improved forecasts. Our simulation analysis is unique in that special attention is paid to cross-correlated idiosyncratic errors, and we also allow the factors to have stronger loadings on some groups of series than others. It thus allows us to better understand the properties of the principal components estimator in empirical applications. 相似文献
7.
This paper introduces a drifting-parameter asymptotic framework to derive accurate approximations to the finite sample distribution of the principal components (PC) estimator in situations when the factors’ explanatory power does not strongly dominate the explanatory power of the cross-sectionally and temporally correlated idiosyncratic terms. Under our asymptotics, the PC estimator is inconsistent. We find explicit formulae for the amount of the inconsistency, and propose an estimator of the number of factors for which the PC estimator works reasonably well. For the special case when the idiosyncratic terms are cross-sectionally but not temporally correlated (or vice versa), we show that the coefficients in the OLS regressions of the PC estimates of factors (loadings) on the true factors (true loadings) are asymptotically normal, and find explicit formulae for the corresponding asymptotic covariance matrix. We explain how to estimate the parameters of the derived asymptotic distributions. Our Monte Carlo analysis suggests that our asymptotic formulae and estimators work well even for relatively small n and T. We apply our theoretical results to test a hypothesis about the factor content of the US stock return data. 相似文献
8.
9.
This paper proposes two new panel unit root tests based on Zaykin et al. (2002) ’s truncated product method. The first one assumes constant correlation between P‐values and the second one uses sieve bootstrap to allow for general forms of cross‐section dependence in the panel units. Monte Carlo simulation shows that both tests have reasonably good size and are powerful in cases of some very large P‐values. The proposed tests are applied to a panel of real GDP and inflation density forecasts, resulting in evidence that professional forecasters may not update their forecast precision in an optimal Bayesian way. 相似文献
10.
This paper proposes a unit root test for panel data with cross-sectional dependence. The test generalizes the nonlinear IV unit root test of Chang (2002) to the case where there exist some common factors in panels. The main idea is to eliminate the cross-sectional dependence through the method of principal components as in Bai and Ng (2004) and then apply Chang’s test to the treated data. Under certain conditions, the proposed test is consistent and has a standard normal limiting distribution under the null hypothesis. Simulation results show that the proposed test compares favorably to other alternative tests. 相似文献
11.
We provide a set of conditions sufficient for consistency of a general class of fixed effects instrumental variables (FE-IV) estimators in the context of a correlated random coefficient panel data model, where one ignores the presence of individual-specific slopes. We discuss cases where the assumptions are met and violated. Monte Carlo simulations verify that the FE-IV estimator of the population averaged effect performs notably better than other standard estimators, provided a full set of period dummies is included. We also propose a simple test of selection bias in unbalanced panels when we suspect the slopes may vary by individual. 相似文献
12.
Christian Gengenbach Franz C. Palm Jean‐Pierre Urbain 《Oxford bulletin of economics and statistics》2006,68(Z1):683-719
Panel unit‐root and no‐cointegration tests that rely on cross‐sectional independence of the panel unit experience severe size distortions when this assumption is violated, as has, for example, been shown by Banerjee, Marcellino and Osbat [Econometrics Journal (2004), Vol. 7, pp. 322–340; Empirical Economics (2005), Vol. 30, pp. 77–91] via Monte Carlo simulations. Several studies have recently addressed this issue for panel unit‐root tests using a common factor structure to model the cross‐sectional dependence, but not much work has been done yet for panel no‐cointegration tests. This paper proposes a model for panel no‐cointegration using an unobserved common factor structure, following the study by Bai and Ng [Econometrica (2004), Vol. 72, pp. 1127–1177] for panel unit roots. We distinguish two important cases: (i) the case when the non‐stationarity in the data is driven by a reduced number of common stochastic trends, and (ii) the case where we have common and idiosyncratic stochastic trends present in the data. We discuss the homogeneity restrictions on the cointegrating vectors resulting from the presence of common factor cointegration. Furthermore, we study the asymptotic behaviour of some existing residual‐based panel no‐cointegration tests, as suggested by Kao [Journal of Econometrics (1999), Vol. 90, pp. 1–44] and Pedroni [Econometric Theory (2004a), Vol. 20, pp. 597–625]. Under the data‐generating processes (DGP) used, the test statistics are no longer asymptotically normal, and convergence occurs at rate T rather than as for independent panels. We then examine the possibilities of testing for various forms of no‐cointegration by extracting the common factors and individual components from the observed data directly and then testing for no‐cointegration using residual‐based panel tests applied to the defactored data. 相似文献
13.
This paper proposes new unit root tests in the context of a random autoregressive coefficient panel data model, in which the null of a unit root corresponds to the joint restriction that the autoregressive coefficient has unit mean and zero variance. The asymptotic distributions of the test statistics are derived and simulation results are provided to suggest that they perform very well in small samples. 相似文献
14.
We consider within-group estimation of higher-order autoregressive panel models with exogenous regressors and fixed effects, where the lag order is possibly misspecified. Even when disregarding the misspecification bias, the fixed-effect bias formula is quite different from the correctly specified case though its asymptotic order remains the same under the stationarity. We suggest bias reduction methods under the possible time series misspecification. 相似文献
15.
Testing for structural breaks in dynamic factor models 总被引:3,自引:0,他引:3
In this paper we investigate the consequences of structural breaks in the factor loadings for the specification and estimation of factor models based on principal components and suggest procedures for testing for structural breaks. It is shown that structural breaks severely inflate the number of factors identified by the usual information criteria. The hypothesis of a structural break is tested by using LR, LM and Wald statistics. The LM test (which performs best in our Monte Carlo simulations) is generalized to test for structural breaks in factor models where the break date is unknown and the common factors and idiosyncratic components are serially correlated. The proposed test procedures are applied to datasets from the US and the euro area. 相似文献
16.
This paper studies estimation of panel cointegration models with cross-sectional dependence generated by unobserved global stochastic trends. The standard least squares estimator is, in general, inconsistent owing to the spuriousness induced by the unobservable I(1) trends. We propose two iterative procedures that jointly estimate the slope parameters and the stochastic trends. The resulting estimators are referred to respectively as CupBC (continuously-updated and bias-corrected) and the CupFM (continuously-updated and fully-modified) estimators. We establish their consistency and derive their limiting distributions. Both are asymptotically unbiased and (mixed) normal and permit inference to be conducted using standard test statistics. The estimators are also valid when there are mixed stationary and non-stationary factors, as well as when the factors are all stationary. 相似文献
17.
This paper develops an estimation and testing framework for a stationary large panel model with observable regressors and unobservable common factors. We allow for slope heterogeneity and for correlation between the common factors and the regressors. We propose a two stage estimation procedure for the unobservable common factors and their loadings, based on Common Correlated Effects estimator and the Principal Component estimator. We also develop two tests for the null of no factor structure: one for the null that loadings are cross sectionally homogeneous, and one for the null that common factors are homogeneous over time. Our tests are based on using extremes of the estimated loadings and common factors. The test statistics have an asymptotic Gumbel distribution under the null, and have power versus alternatives where only one loading or common factor differs from the others. Monte Carlo evidence shows that the tests have the correct size and good power. 相似文献
18.
In Choi 《Oxford bulletin of economics and statistics》2013,75(2):297-306
This article shows that spurious regression results can occur for a fixed effects model with weak time series variation in the regressor and/or strong time series variation in the regression errors when the first‐differenced and Within‐OLS estimators are used. Asymptotic properties of these estimators and the related t‐tests and model selection criteria are studied by sending the number of cross‐sectional observations to infinity. This article shows that the first‐differenced and Within‐OLS estimators diverge in probability, that the related t‐tests are inconsistent, that R2s converge to zero in probability and that AIC and BIC diverge to ?∞ in probability. The results of the article warn that one should not jump to the use of fixed effects regressions without considering the degree of time series variations in the data. 相似文献
19.
It is known that the principal component estimates of the factors and the loadings are rotations of the underlying latent factors and loadings. We study conditions under which the latent factors can be estimated asymptotically without rotation. We derive the limiting distributions for the estimated factors and factor loadings when N and T are large and make precise how identification of the factors affects inference based on factor augmented regressions. We also consider factor models with additive individual and time effects. The asymptotic analysis can be modified to analyze identification schemes not considered in this analysis. 相似文献
20.
Jean‐Pierre Urbain Joakim Westerlund 《Oxford bulletin of economics and statistics》2011,73(1):119-139
This article makes an analytical study of the effects of the presence of both common and idiosyncratic stochastic trends on the pooled least squares estimator. The results suggest that the usual result of asymptotic normality depends critically on the absence of the common stochastic trend. 相似文献